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B. Problem Definition
⚫ Input: A schema 𝑅, a relation 𝐷 of 𝑅, and a knowledge graph 𝐺.

⚫ Output: The split 𝑇𝑆(𝑡) for all tuples 𝑡 in 𝐷, by referencing 𝐺.

C. Contribution
  1. A scheme 
❑ Scheme SET (Splitting EnTities). It takes 𝐺 as input, and (1) splits mismatched 

entities and (2) corrects tuples with errors.

  2. Extending REEs
❑ REE+. It extends Entity Enhancing Rules (REE) to REE+; by employing REE+, 

SET splits mismatched tuples and corrects errors in a uniform process of logic 

deduction, ML correlation and data extraction.

  3. Detecting mismatched entities
 An ML model 𝑀𝑐. We train an ML model 𝑀𝑐 that assesses the correlation of 

attribute values.

 Mismatch detection. By embedding an ML model 𝑀𝑐 in REE+, SET decides 

whether a tuple with conflicts to split or to correct.

 Initial split. For a tuple to split, it decomposes it into multiple tuples, each 

denotes a distinct entity, by referencing knowledge graph 𝐺.

  4. Splitting tuples
 Tuple (further) split. For a tuple to split, it distributes the un-assigned attribute 

values to right entities.

 Tuple correction. For tuples with errors, it resolves the conflicts by enforcing 

REE+s and accumulating/referencing a set Γ of validated facts (ground truth).

 Church-Rosser property. We show that under certain conditions on the ML 

models M in REE+, the chase is Church-Rosser.

5. Deducing missing values
 An ML model 𝑀𝑑. It trains an ML model 𝑀𝑑 for imputing missing attribute 

values.

 Three imputation strategies. SET fill in the missing values of the split tuples by 

supporting three strategies: logic deduction, data extraction from knowledge 

graphs, and ML prediction.

6. Experimental study on real-life data
 Accuracy. On average, 

• its 𝐹1-score is 0.92 by combining logic deduction, ML correlation models and 

data extraction from knowledge graphs.

• It is more accurate than all the baselines, by 31.8%, 8.3% and 39.5% for 

deciding what tuples to split/correct, assigning attribute values to the split 

tuples, and imputing missing value, respectively. 

• It outperforms rule-based methods and ML-based methods by 35.5% and 

30.3% respectively. 

 Efficiency. It takes 1,481s on a dataset of 1,057,217 tuples, with a single 

machine.

A. Introduction
 1. A real mismatch in IMDB: As shown in the figure below, the tuple 𝑡𝑠

  denotes a record of two mismerged European directors named  “Noemi 

  Schneider” in IMDB; in contrast, the tuple 𝑡𝑐 is a director record with 

  erroneous attribute values.

  2. Other real mismatches

❑ Wikidata (e.g., Joseph de Cambis (Q3185827))

❑ DBLP (e.g., authors with the same names can be mismerged) 
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Questions: 

➢ How can we decide whether a tuple with conflict values should 

be split or corrected? 

➢ To split a tuple, how should we distribute its values to the right 

entities? 

➢ How can we fill in missing values for the tuples resulted from 

splitting?

D. REE+, scheme and models
  1. REE+

We extend REEs by supporting the following predicates defined over a database 

schema 𝑅 and a knowledge graph 𝐺.

      𝑝 ∶= vertex 𝑥, 𝐺  HER 𝑡, 𝑥  match 𝑡. 𝐴, 𝑥. 𝜌 𝑡 𝐴 = val 𝑥. 𝜌
                       𝑀𝑐(𝑡[ ҧ𝐴], 𝑡[𝐵]) ≥ 𝛿 | 𝑀𝑐(𝑡[ ҧ𝐴], 𝑡[𝐵] = 𝑐) ≥ 𝛿 | 𝑡[𝐵] = 𝑀𝑑(𝑡[ ҧ𝐴], 𝐵)

• 𝑥 in vertex(x, 𝐺) is a variable denoting a vertex in knowledge graph 𝐺, referred 

to as a variable bounded by vertex(𝑥, 𝐺). 

• If 𝑥 is bounded by vertex(𝑥, 𝐺) and 𝑡 is bounded by R(𝑡), HER(𝑡, 𝑥) is a Boolean 

function that returns true if tuple t and vertex 𝑥 refer to the same entity.

• If 𝜌 is a label path and if 𝑥 and 𝑡 are bounded as above, match(𝑡.A, x.ρ) checks 

whether the path 𝜌 from vertex 𝑥 encodes the 𝐴-attribute of tuple t. 
• If t and x are bounded as above and match(𝑡. 𝐴, 𝑥. 𝜌) returns true, 

𝑡[A] = val(𝑥. 𝜌) indicates that the 𝐴-attribute of 𝑡 takes the value (label) of the 

last vertex 𝑣 on the match of 𝜌 from vertex 𝑥.

• 𝑀𝑐 is an ML model that checks the strength of the correlation between (partial) 

tuple 𝑡[ ҧ𝐴] and the 𝐵-attribute value 𝑡[𝐵], and 𝛿 is a strength threshold. 

• 𝑀𝑑 is an ML model that given a partial tuple 𝑡[ ҧ𝐴], predicts a value for its 𝐵-

attribute.

   2. Scheme
The workflow of SET is shown as follows.

 DecideTS. For each 𝑡 in 𝐷, SET detects conflicts in a single tuple (e.g., a film 

and filmFestival) and across tuples (e.g., different countries for the same city), 

with 𝑀𝑐. For each detected 𝑡, SET creates a set 𝑇𝑆(𝑡) of split tuples 

{𝑡1, … , 𝑡𝑘} based on conflicting attributes, such that each 𝑡 in 𝑇𝑆(𝑡) denotes a 

distinct entity. When 𝑇𝑆 𝑡 = 1, 𝑡 is erroneous and is corrected without splitting.

 Splitting. For each 𝑡 in 𝑇𝑆 𝑡 to split or correct, SET resolves conflicts and 

distributes attribute values of 𝑡 to the right entities with 𝑀𝑐 by chasing 𝑇𝑆 𝑡 with 

REE+.

 Completing. SET then fills in missing values of tuples in 𝑇𝑆 𝑡 with 𝑀𝑑 by 

applying REE+s.

 User verification (optional). SET presents tuples in 𝑇𝑆 𝑡 to users for 

confirmation.

  3. Network structure of 𝑴𝒄 and 𝑴𝒅

 Graph pretraining. We pretrain graph embeddings on a knowledge graph G, so 

that we can implicitly learn rich contextual information (e.g., DOK.fest held in 

Munich) from pretrained embedding.

 Context-aware embedding. We model 𝐼𝑡 = (𝑡[ ҧ𝐴], 𝑡[𝐵]) as a sequence by 

concatenating attribute values) and design encoders to obtain two representations 

of 𝐼𝑡 via graph embeddings and language models, respectively. After a softmax 

layer, we combine the classifications and generate a confidence score by 

incorporating semantics.

 E. Experiments
 Real-life Datasets. Citation, College, Person and IMDB.

 Baselines. Bert, Raha+Baran, Holoclean and Imp3C.

 Measurements. F1-score and execution time
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