

Splitting Tuples of Mismatched Entities

Wenfei Fan^{1 2 3} Ziyan Han¹ Weilong Ren*² Ding Wang⁴ Yaoshu Wang² Min Xie² Mengyi Yan¹

¹Beihang University ²Shenzhen Institute of Computing Sciences ³University of Edinburgh ⁴Tsinghua University

A. Introduction

1. A real mismatch in IMDB: As shown in the figure below, the tuple t_s denotes a record of two mismerged European directors named "Noemi Schneider" in IMDB; in contrast, the tuple t_c is a director record with erroneous attribute values.

i	nfoı	mation from	the Swiss di	rector	information from the German director				erroneous values	
1	tid	name	nationality	born	college	film	filmFestival	fest(City	festCountry
	$t_{ m s}$	Noemi Schneider	Swiss	2013	null	Sturm	DOK.fest	Mun	ich	null
	$t_{\rm c}$	Noemi Schneider	Japanese	1986	ZHdK	Sturm	Landshut Short Film Festival	Lands	shut	Germany

Questions:

- ➤ How can we decide whether a tuple with conflict values should be split or corrected?
- > To split a tuple, how should we distribute its values to the right entities?
- How can we fill in missing values for the tuples resulted from splitting?

2. Other real mismatches

- ☐ Wikidata (e.g., Joseph de Cambis (Q3185827))
- □ DBLP (e.g., authors with the same names can be mismerged)

B. Problem Definition

- Input: A schema R, a relation D of R, and a knowledge graph G.
- Output: The split TS(t) for all tuples t in D, by referencing G.

C. Contribution

1. A scheme

 \square Scheme SET (Splitting EnTities). It takes G as input, and (1) splits mismatched entities and (2) corrects tuples with errors.

2. Extending REEs

□ REE+. It extends Entity Enhancing Rules (REE) to REE+; by employing REE+, SET splits mismatched tuples and corrects errors in a uniform process of logic deduction, ML correlation and data extraction.

3. Detecting mismatched entities

- \square An ML model M_c . We train an ML model M_c that assesses the correlation of attribute values.
- □ Mismatch detection. By embedding an ML model M_c in REE+, SET decides whether a tuple with conflicts to split or to correct.
- □ Initial split. For a tuple to split, it decomposes it into multiple tuples, each denotes a distinct entity, by referencing knowledge graph *G*.

4. Splitting tuples

- Tuple (further) split. For a tuple to split, it distributes the un-assigned attribute values to right entities.
- Tuple correction. For tuples with errors, it resolves the conflicts by enforcing REE+s and accumulating/referencing a set Γ of validated facts (ground truth).
- □ Church-Rosser property. We show that under certain conditions on the ML models *M* in REE+, the chase is Church-Rosser.

5. Deducing missing values

- □ An ML model M_d . It trains an ML model M_d for imputing missing attribute values.
- ☐ Three imputation strategies. SET fill in the missing values of the split tuples by supporting three strategies: logic deduction, data extraction from knowledge graphs, and ML prediction.

6. Experimental study on real-life data

- Accuracy. On average,
- its F_1 -score is 0.92 by combining logic deduction, ML correlation models and data extraction from knowledge graphs.
- It is more accurate than all the baselines, by 31.8%, 8.3% and 39.5% for deciding what tuples to split/correct, assigning attribute values to the split tuples, and imputing missing value, respectively.
- It outperforms rule-based methods and ML-based methods by 35.5% and 30.3% respectively.
- ☐ Efficiency. It takes 1,481s on a dataset of 1,057,217 tuples, with a single machine.

D. REE+, scheme and models

1. REE+

We extend REEs by supporting the following predicates defined over a database schema R and a knowledge graph G.

$$p := \operatorname{vertex}(x, G) \mid \operatorname{HER}(t, x) \mid \operatorname{match}(t, A, x, \rho) \mid t[A] = \operatorname{val}(x, \rho) \mid$$

$$M_c(t[\bar{A}], t[B]) \geq \delta \mid M_c(t[\bar{A}], t[B] = c) \geq \delta \mid t[B] = M_d(t[\bar{A}], B)$$

- x in vertex(x, G) is a variable denoting a vertex in knowledge graph G, referred to as a variable bounded by vertex(x, G).
- to as a variable bounded by vertex(x, G).

 If x is bounded by vertex(x, G) and t is bounded by vertex(x, G) is a Boolean
- function that returns true if tuple t and vertex x refer to the same entity.

 If ρ is a label path and if x and t are bounded as above, $match(t.A, x.\rho)$ checks whether the path ρ from vertex x encodes the A-attribute of tuple t.
- If t and x are bounded as above and $match(t, A, x, \rho)$ returns true, $t[A] = val(x, \rho)$ indicates that the A-attribute of t takes the value (label) of the last vertex v on the match of ρ from vertex x.
- M_c is an ML model that checks the strength of the correlation between (partial) tuple $t[\bar{A}]$ and the B-attribute value t[B], and δ is a strength threshold.
- M_d is an ML model that given a partial tuple $t[\bar{A}]$, predicts a value for its B-attribute.

2. Scheme

The workflow of SET is shown as follows.

- DecideTS. For each t in D, SET detects conflicts in a single tuple (e.g., a film and filmFestival) and across tuples (e.g., different countries for the same city), with M_c . For each detected t, SET creates a set TS(t) of split tuples $\{t_1, \ldots, t_k\}$ based on conflicting attributes, such that each t in TS(t) denotes a distinct entity. When |TS(t)| = 1, t is erroneous and is corrected without splitting.
- Splitting. For each t in TS(t) to split or correct, SET resolves conflicts and distributes attribute values of t to the right entities with M_c by chasing TS(t) with REE+.
- lacktriangleq Completing. SET then fills in missing values of tuples in TS(t) with M_d by applying REE+s.
- User verification (optional). SET presents tuples in TS(t) to users for confirmation.

3. Network structure of M_c and M_d

- ☐ Graph pretraining. We pretrain graph embeddings on a knowledge graph G, so that we can implicitly learn rich contextual information (e.g., DOK.fest held in Munich) from pretrained embedding.
- Context-aware embedding. We model $I_t = (t[\bar{A}], t[B])$ as a sequence by concatenating attribute values) and design encoders to obtain two representations of I_t via graph embeddings and language models, respectively. After a softmax layer, we combine the classifications and generate a confidence score by incorporating semantics.

E. Experiments

- □ Real-life Datasets. Citation, College, Person and IMDB.
- Baselines. Bert, Raha+Baran, Holoclean and Imp3C.
- Measurements. F1-score and execution time

Datasets (Time)