

A Retrieval-Augmented Framework for Tabular Interpretation with LLM

Mengyi Yan¹ Weilong Ren*² Yaoshu Wang² Jianxin Li*¹ Beihang University ²Shenzhen Institute of Computing Sciences

A. Introduction

A Real-World Case for Tabular Interpretation:

As shown in the figure below, the schema-free webtable T contain various metadata, columns and cells with hyperlink.

Column Type Annotation (CTA) refers to deciding the column type for column CITY;

Entity Linking(**EL**) refer to choosing the KG entity linked with cell **Suisse**. Relation Extraction(**RE**) refer to decide the KG relation for column pair (**Team-P**)

Questions:

- \blacktriangleright How can we retrieve related tables from a large amount of web table corpus \mathcal{T} ?
- To annotate a cell/column/column-pair, how can we consider both **semantic** and **structural** similarity?
- ➤ How can we teach a LLM to rank and annotate web tables, without hallucination and numerous pre-training data?

B. Motivation

1. Pre-Ranking and Re-Ranking: Weak-to-Strong

Motivated from recommendation system, for a given table T, we apply light-weighted model G, M to retrieve related table set, as well as providing preranking options; next, we apply LLM as a fine-grained selector for re-ranking.

2. Contrastive Learning:

We apply contrastive learning with Sentence-Bert like model, to quickly select top-k most possible options for a variety of schema-free table, consider semantic similarity.

3. Graph Structural Learning(GSL):

We transfer self-annotated tables T to graph G, and apply GCN to learn structural similarity for any given table pair (T_1, T_2) .

4. Retrieval-Augmented LLM for re-ranking:

LLM only needs to consider top-k options from pre-ranking phase, and most-related demonstration, retrieved from related table set.

C. Problem Definition

1. Pre-Ranking Model(RAFL_{ret})

- Input: A schema-free web table $T \in \mathcal{T}$, an annotated training set T_{train} , a knowledge graph \mathcal{G}
- Output: Related table set $T_{related}$ with self-annotation; self-annotated preranking top-k options O for T

2. Re-Ranking Model($RAFL_{rank}$ with LLM)

- Input: Specific task $\kappa \in \{CTA, RE, RL\}$, Instruction Ins^{κ} for task κ , demonstration D^{κ} from $T_{related}$, top-k options O^{κ} for T.
- Output: Selection $o^{\kappa} \in O^{\kappa}$ by LLM as re-ranking model.

Table Interpretation Task	Column Type Annotation: City in Switzerland	Entity Linking: e^e =Swiss national football team(Q165141)	Relation Extraction: number of points/goals/set scored(P1351)			
	Column Type Annotation(CTA)	Entity Linking(EL)	Relation Extraction(RE)			
Task-Specific Instruction \int for LLM	Instruction Ins^{CTA} : Please check col-1, and choose which type can best conclude the column type.	Instruction Ins^{EL} : Please check the given cell, and choose which entity in KG can best match the cell.	Instruction Ins^{RE} : Please check col-3/col-4, and choose which type can best conclude the relation in KG.			
	Options $O^{CTA} \subseteq \mathcal{L}$: $\{ city, state, county \}$ Demonstration D^{CTA} :	Options $O^{EL} \subseteq \mathcal{C}_e$:{Suisse:city,Suisse:name,Suisse:football team} Demonstration D^{EL} :	Options $O^{RE} \subseteq \mathcal{R}$:{number of goal/number of plays/count} $Demonstration D^{RE}$:			
	Champion Euro 2012: col-1:{AutrichelCroatie} type:City Champion Euro 2002: col-3:{GenevelBale} type:Team	Champion Euro 2012: cell:{Autriche} entity:{Autriche:team}	Champion Euro 2012: col:{Team/P} relation:{number of goal} Champion Euro 2002: cell:{City/P} relation:{number of plays}			
$\begin{array}{c c} \textbf{Model} \\ \textbf{Output} \\ o^{\kappa} \end{array}$	Table T^{CTA} : Champion Euro 08 col-1:{BalelGeneve} Model Output o^{CTA} : Column Type: {type:City in Switzerland}	Champion Euro 2002: cell:{Geneve} entity:{Geneve:city} Table T^{EL} : Champion Euro 2008 {col:team,cell:suisse} Model Output o^{EL} : Entity:{Suisse:Swiss national football team}	Table T^{RE} : Champion Euro 2008 {col-3:Team,col-4:P} Model Output o^{RE} : KG Relation:{number of goals}			

D. Contribution

- An unified framework RAFL for tabular interpretation learning: RAFL handles information retrieval, self-supervised annotation and ranking procedure with state-of-the-art LLM-backboned model in a reliable manner.
- A graph-enhanced retrieval system: which can annotate and retrieve related table set, considering both semantic and structural similarity.
- A two-stage ranking system with LLM: transfer tabular interpretation task into a ranking problem, and apply RAG paradigm to alleviate LLM hallucination.
- Comprehensive Experiment: RAFL has both high precision and few-shot learning capability in various tasks, comparing to non-LLM and LLM solutions.

E. Retrieval System RAFL_{ret}

1. Bi-level Ranking Model M:

Given training set T_{train} of annotated tables, M can embed any table $T \in \mathcal{T}$ and task-specific information (e.g. column type $l \in \mathcal{L}$, relation type $r \in \mathcal{R}$) in unified embedding space. Sentence-Bert model M is fine-tuned with contrastive loss.

2. Self-Annotation:

When training is finished, we obtain the task-specific ensembled model set: $M_{ens} = \{M_{CTA}, M_{RE}, M_{EL}\}$. Given T without annotation, we apply the ensembled M_{ens} to predict top-1 annotation for GSL, and top-k annotation for re-ranking.

3. Graph Structural Learning(GSL):

We leverage the annotation result of semantic type by M_{ens} to transfer all $T \in \mathcal{T}$ to a directed graph G. Such procedure refines various headers $T.H \in T$ to a limited pre-defined semantic type set $\mathcal{L}, \mathcal{R} \in \mathcal{G}$. After graph construction, we apply M to initialize the embedding, and apply GCN to further learn the structural information.

4. Similarity Calculation:

related table set $T_{related}$ are firstly selected from filter graph $G_{related}$ to reduce search space; then the similarity score is calculated by ranking the sum of graph embedding similarity provided by G, and the semantic embedding similarity provided by M.

F. Re-Ranking System RAFL_{rank}

1. Avoiding Hallucination of LLM:

- LLM cannot select the correct annotation from hundreds of sematic type set $\mathcal{L} \cup \mathcal{R}$. (Limited Input Token Length)
- LLM cannot understand the meaning of each semantic type $l \in \mathcal{L}$ (resp. $r \in \mathcal{R}$) without demonstration.
- Restrict Selection Domain: to avoid hallucination, LLM is restricted to select from pre-ranking options O^{κ} from M_{ens} .
- RAG Paradigm: LLM is also provided with the most related self-annotated table corpus $T_{related}$ as task-specific demonstration, as illustration

2. LLM Fine-Tuning

To guarantee generation stability, the local LLM is fine-tuned with training data T_{train} with LoRA technique.

G. Experiment

understanding long-context multi-table data.

- LLM-backboned model: Mistral-7B, Vicuna-13B; RAG Model: bge-large-en
- LLM is inherently suitable with few-shot scenario, without feature engineering.
- RAG significantly alleviate LLM hallucination, output structural prediction.
 Two-stage ranking strategy compensate the shortage of local LLM ability in

Table 2: Result	s of task CTA	4 on datase	t Semtab2	019/WebTab	Table 4: Results of task RE and EL				
Model	Semtab2019		WebTables			on dataset	WikiGS		
	Micro F	Micro F1 Macro F1		Micro F1 Macro F1			Wiki	WikiGS-EL	
Sherlock (100	0%) 0.646	$0.646 \qquad 0.440$		0.670		Model		Macro F1	
TaBERT (100	0%) 0.768	0.413	0.896	0.650		TURL(10%)	0.7350	0.3088	0.6055
TABBIE (100	0%) 0.799	0.607	0.929	0.734		RAFL (10%)	0.8930	0.8365	0.8705
DODUO (100	0%) 0.820	0.630	0.928	0.742		TURL(25%)		$\frac{0.6755}{0.6755}$	$\frac{0.7394}{0.7394}$
m RECA(25%	(0.697)	0.442	0.909	0.680		RAFL (25%)	1	0.8642	0.8861
RAFL $(25\%$	0.861	0.743	0.963	0.825		TURL(100%)	′ I	0.8016	0.8420
RECA(100%	(6) 0.853	0.674	0.937	0.783		RAFL (100%)	1	0.9153	0.9112
RAFL (100%)	(a) 0.875	0.766	0.967	0.834		GPT-4	0.5295	0.4326	0.9065
	Model		Sem	tab2019	Web	Tables	Wiki	GS-RE	
	IVIOC	Model		1 Macro F1	Micro F1	Macro F1	Micro F1	Macro F1	
	TableLLaMA(7B)		0.822	0.559	0.946	0.805	0.658	0.423	_
RAFL (Mistral-7B)			0.862	0.675	0.961	0.791	0.832	0.621	_
RAFL (Vicuna-13B)			0.861	0.743	0.963	0.825	0.893	0.836	