A Retrieval-Augmented Framework for Tabular Interpretation with LLM

Mengyi Yan¹ Weilong Ren^{2*} Yaoshu Wang² Jianxin Li^{1*}

¹Beihang University ²Shenzhen Institute of Computing Sciences

Outline

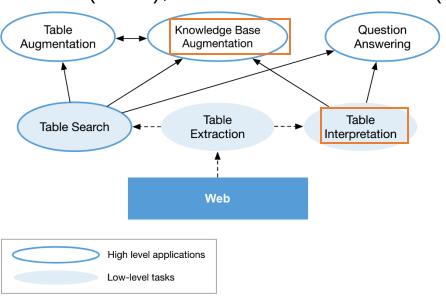
- Background & Motivation
- Problem Definition
- Challege & Solution
- Our framework
 - ➤ Retrieval Module *RAFL*_{ret}
 - \triangleright Re-Ranking System $RAFL_{rank}$
- Experiments
- Conclusion

Background

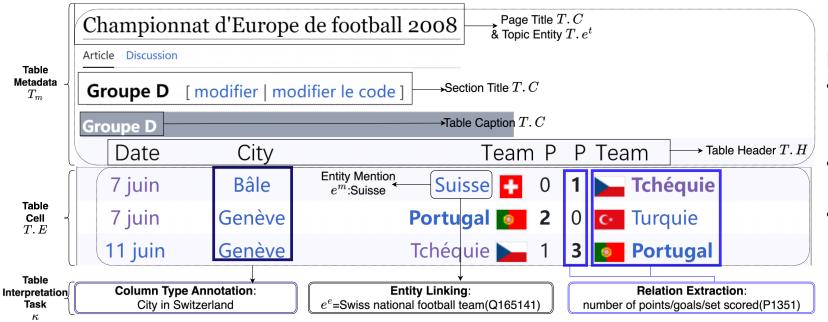
- Table Interpretation: understanding schema-free web tables
 - ➤ Goal: Uncover the semantic attributes in relational tables
 - ightharpoonup Method: Mapping webtable data(e.g. column/cell) into the node/relation in Knowledge Graph ${\cal G}$

Task: Column Type Annotation(CTA), Relation Extraction(RE), Entity

Linking(EL)



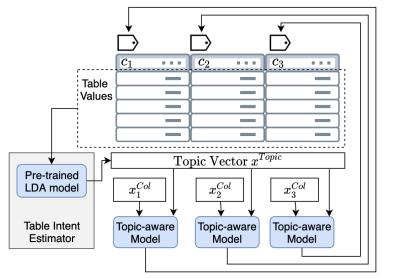
A Real-World Case of Tabular Interpretation for webtable

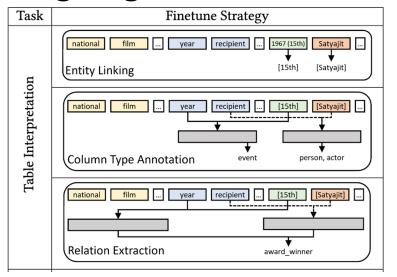


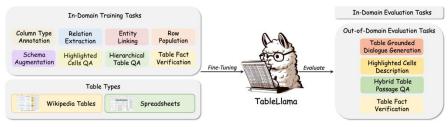
Difference from relational table:

- Various schema-free subtable(e.g. 200k tables for WikiGS Dataset)
 - How to Retrieve similar tables?
 - Each table has different metadata
 - How to Cooperate metadata?
- Close relation with Knowledge Graph(i.e. KG entity/relation)
 - How to map and rank KG relations/nodes?
- Column Type Annotation (CTA): refers to deciding the column type for column CITY;
 - \succ Column type are selected from a pre-defined semantic type set $l \in \mathcal{L}$
- Entity Linking(EL): refer to choosing the KG entity linked with cell <u>Suisse</u>;
- Relation Extraction(RE): refer to decide the KG relation for column pair (<u>Team-P</u>).
 - \succ Relation type are selected from a pre-defined relation type set $r \in \mathcal{R}$

Motivation: Can language model understand webtable well?







2019-SATO¹: Topic-aware LDA model

2022-TURL²: Representation Learning with PLM

2024-TableLLAMA³: Unified Generative Method with LLM

- Previous works on language model cannot solve the tabular interpretation task well.
 - > Limited capability of retrieving and incorporating inter-table context
 - ➤ Inadequate ability in handling large tables
 - > PLMs are hard to read tables reliably
- We believe that LLM can be adopted to solve the table interpretation task if we use it properly.
 - > LLM can process a longer query than traditional PLMs
 - > LLM can read a whole table with additional inter-table contexts
 - > LLM is pretrained on a variety of corpus
- 1. Zhang, Dan, et al. "Sato: Contextual semantic type detection in tables." *Proceedings of the VLDB Endowment*, 13(11) 2019.
- 2. Deng, Xiang, et al. "Turl: Table understanding through representation learning." ACM SIGMOD Record 51.1 (2022): 33-40.
- 3. Zhang, Tianshu, et al. "TableLlama: Towards Open Large Generalist Models for Tables." NAACL (Volume 1: Long Papers). 2024.

Problem definition of table interpretation

• Input:

- \triangleright a relational web table T in webtable dataset T
- \triangleright a large language model M_G
- \succ a knowledge graph $\mathcal G$
- \triangleright a specific task κ
- \succ the task-related information T^{κ} , instruction Ins^{κ} , and a set D^{κ} of related demonstrations
- \triangleright top-k options O^{κ}

Output

 \triangleright an element $o^{\kappa} \in O^{\kappa}$, as the final selection

Challenges

- How to search for related tables from a variety of sub-tables set?
- How to measure structural and semantic similarity among schema-free tables?
- How to alleviate the hallucination problem of LLM?

Our solution

- How to search for related tables from a variety of sub-tables set?
 - ✓ We apply a retrieval-augmented module to search related table set from a variety of corpus, in a unified embedding space
- How to measure structural similarity among schema-free tables?
 - ✓ We introduce an auxiliary graph structure to measure structural similarity.
- How to alleviate the hallucination problem of LLM?
 - ✓ We use pre-ranking model to restrict options and demonstrations, and treat LLM as a re-ranking model.

Our framework: RAFL

1. Pre-Ranking Model($RAFL_{ret}$)

- Input: A schema-free web table $T \in \mathcal{T}$, an annotated training set T_{train} , a knowledge graph \mathcal{G}
- Output: Related table set $T_{related}$ with self-annotation; pre-ranking top-k options O for T

2. Re-Ranking Model($RAFL_{rank}$ with LLM)

- Input: Specific task $\kappa \in \{CTA, RE, RL\}$, Instruction Ins^{κ} for task κ , demonstration D^{κ} from $T_{related}$, top-k options O^{κ} for T.
- Output: Selection $o^{\kappa} \in O^{\kappa}$ by LLM as re-ranking model.

The light weighed pre-ranking model

 $RAFL_{ret}$ Restrict different header to pre-defined limited semantic type $\mathcal{L}, \mathcal{R} \in \mathcal{G}$ 3. Graph Construction and • Different sub-table T are concatenated to a **Graph Structural Learning** unified directed graph G GSL to learn structural similarity Source Dataset TInput: Unlabeled $T_{label} \in \mathcal{T}_{train}$, only Column Type Labeled Warsaw Marie Curie Directed Graph Gsub-table T London Alan Turing CTA with annotation name Florence Nightingale 320-05-12 Florence Nightingale Entity Linking Unlabeled table T self-annotated 867-11-07 Marie Curie Graph Construction by \mathcal{M}_{EL} **Semantic Similar** date name Retrieval System 912-06-23 Alan Turing Relation self-annotated lacksquare $RAFL_{ret}$ 1. Bi-level Nightingale Nurse by \mathcal{M}_{RE} birthdate occupation Related Table Set Retrieval: Curie Chemist Ranking Model M: Graph Embedding Similarity + Turina Scientist CTA self-annotated Self-Annotate city Semantic Embedding Similarity population COL ntry labeled table $T_{label} \in \mathcal{T}_{train}$ Cell-Level and Columnby \mathcal{M}_{CTA} \mathcal{T} with \mathcal{M} ??? ??? Level Serialization Labelled Data Florence **Entity Linking** 380,498 Trained by Contrastive Structural Similar \mathcal{T}_{train} > self-annotated Warsaw 1,777,972 Model \mathcal{M} contains: Learning by \mathcal{M}_{EL} Braunschweig Training Pre-Ranking Ensembling Germany 248.023 \mathcal{M}_{CTA} $\rightarrow \mathcal{M}_{ens}$ Model Set ${\mathcal M}$ \mathcal{M}_{RE} 4. Similarity Calculation Relation self-annotated \mathcal{M}_{EL} population by \mathcal{M}_{RE} $T_{related} \subseteq \mathcal{T}$, all task unlabeled Training for Retrieval System $RAFL_{ret}$ Inference for Retrieval System $RAFL_{ret}$ 2. Self-Annotation **Output:** With Ensembled Model Related Table Set $T_{related}$ for TPre-Ranking Options O for T Model Ensemble

Calculate Semantic Similarity

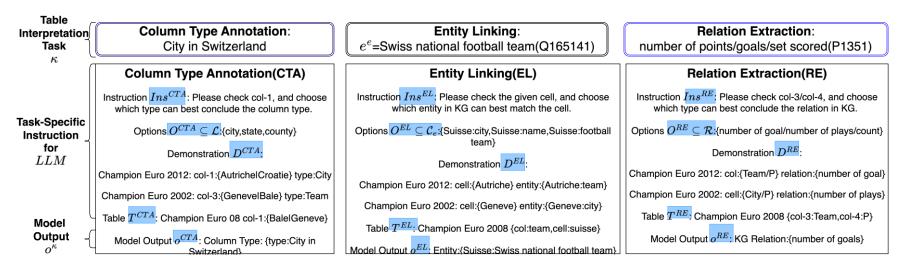
Re-Ranking System RAFL_{rank}

Avoiding Hallucination of LLM:

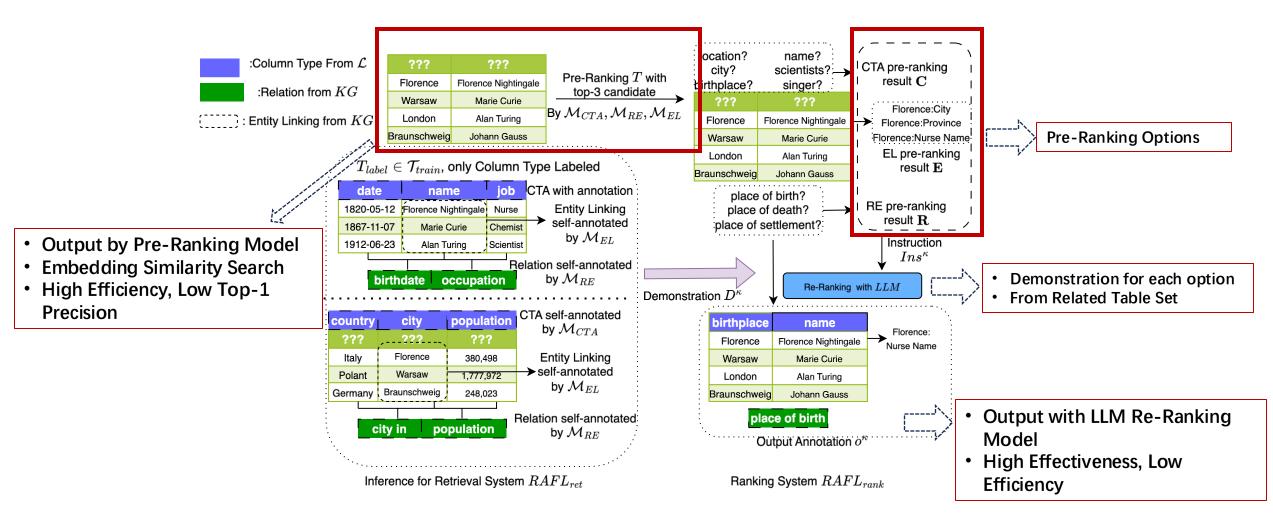
- LLM cannot select the correct annotation from hundreds of sematic type set $\mathcal{L} \cup \mathcal{R}$. (Limited Input Token Length)
- LLM cannot understand the meaning of each semantic type $l \in \mathcal{L}$ (resp. $r \in \mathcal{R}$) without demonstration.

How do RAFL solve such issue?

- **Restrict Selection Domain**: to avoid hallucination, LLM is restricted to select from preranking options O^{κ} from M_{ens} .
- **RAG Paradigm**: LLM is also provided with the most related self-annotated table corpus $T_{related}$ as task-specific demonstration, as illustration



The LLM-based re-ranking model RAFL_{rank}



Experiments

- LLM-backboned model: Mistral-7B, Vicuna-13B
 - Fine-Tuned with LLaMA-Factory¹, Inference with vLLM²
- RAG Model: bge-large-en
- Non-LLM Baseline:
 - Sherlock/Tabert/Tabele/Duduo/Reca
- LLM Baseline
 - TableLLAMA(applies a 7B LLM model, and pre-trained on millions of tabular data.)
- Metrics:
 - Micro-F1(Overall Evaluation of prediction result)
 - Macro-F1(Prediction Accuracy of Minority Semantic Type Class)
- Hardware:
 - 4 V100 GPU

^{1.} http://github.com/hiyouga/LLaMA-Efficient-Tuning

^{2.} https://github.com/vllm-project/vllm

Experiment: Main Result

Table 2: Results of task CTA on dataset Semtab2019/WebTables

Model		ab2019 Macro F1		Tables Macro F1
Sherlock (100%)	0.646	0.440	0.844	0.670
TaBERT (100%)	0.768	0.413	0.896	0.650
TABBIE (100%)	0.799	0.607	0.929	0.734
DODUO (100%)	0.820	0.630	0.928	0.742
RECA(25%)	0.697	0.442	0.909	0.680
RAFL (25%)	0.861	0.743	0.963	0.825
$\operatorname{RECA}(100\%)$	0.853	0.674	0.937	0.783
RAFL (100%)	0.875	0.766	$\boldsymbol{0.967}$	0.834

Table 4: Results of task RE and EL on dataset WikiGS

Model	Wiki Micro F1	WikiGS-EL Accuracy	
TURL(10%)	0.7350	0.3088	0.6055
RAFL (10%)	0.8930	0.8365	0.8705
TURL(25%)	0.8601	0.6755	0.7394
RAFL (25%)	0.9295	0.8642	0.8861
TURL(100%)	0.9025	0.8016	0.8420
RAFL (100%)	0.9323	0.9153	0.9112
GPT-4	0.5295	0.4326	0.9065

- LLM is inherently suitable with few-shot scenario, without requirement of feature engineering.
- RAG significantly alleviate LLM hallucination, output structural prediction.
- Two-stage ranking strategy compensate the shortage of local LLM ability in understanding longcontext multi-table data
- LLM methods have significant higher data efficiency and learning efficiency, it requires fewer label data to achieve higher results.

Experiment: Ablation Study

Table 3: Ablation study of different backbone LLM model for task CTA (resp. RE) on Semtab2019/WebTables (resp. WikiGS-RE) with 25% (resp. 10%) training data.

Model	Semtab2019		WebTables		WikiGS-RE	
Model	Micro F1	Macro F1	Micro F1	Macro F1	Micro F1	Macro F1
TableLLaMA(7B)	0.822	0.559	0.946	0.805	0.658	0.423
RAFL (Mistral-7B)	0.862	0.675	0.961	0.791	0.832	0.621
RAFL (Vicuna-13B)	0.861	0.743	0.963	$\boldsymbol{0.825}$	0.893	0.836

Table 5: An Ablation Study on RE task

Model	Micro F1	Macro F1
RAFL w/o ret	0.3272	0.2469
RAFL w/o LLM	0.7427	0.5503
RAFL with LangChain	0.7842	0.5846
RAFL	0.8930	0.8365

- For Table 3, due to scaling law, a larger model can not only understands the context of downstream tasks but also performs more equitable classifications across minority relations and types.
- For Table 5, we have the following observations:
 - RAFL with LangChain: LangChain can only retrieve related corpus with semantic similarity, neglecting structural similarity
 - RAFL w/o LLM: pre-ranking model may have high top-k precision, but cannot achieve high top-1
 precision. A more complex re-ranking model is essential
 - RAFL w/o ret: LLM suffers from hallucination issue

Conclusion

- We aim to solve the tabular interpretation problem with a unified retrieval-augmented framework with LLM. The novelty of our work consist of:
 - Propose a scheme, by unifying GSL, PLM and LLM in the same process
 - Retrieval-Augmented module to search relevant and similar table sets by semantic similarity, leveraging metadata.
 - Graph-Enhanced module to measure structural similarity among schema-free web tables.
 - Learn-to-Rank for LLM: alleviating LLM hallucination in ranking problem
- Our experiment study show LLM-based tabular interpretation is promising in practice, and have high data efficiency and learning efficiency