Efficient Mixture of Experts based on Large Language Models for Low-Resource Data Preprocessing

Mengyi Yan¹ Yaoshu Wang^{2*} Kehan Pang¹ Min Xie² Jianxin Li^{1*}

¹Beihang University ²Shenzhen Institute of Computing Sciences

Preliminary: Mixture-of-Experts(MoE) Architecture

- Contains multiple sub-model(Multiple Expert Model)
- Parameter is Sparse Activated (e.g. Top-2 of a total of 8 experts per token for Mixtral)
- Different Expert model can concentrate on different aspects, improving overall performance on MTL.

y₂

- Mixtral of Experts. arXiv preprint arXiv:2401.04088 (2024).
- 2. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. The Journal of Machine Learning Research 23, 1 (2022), 5232–5270.

Motivation: Parameter and Data-Efficient Learning in Data Preprocessing for DB

- In Database Area, Data preprocessing(DP) tasks and labeled data are diverse and domain-specific
 - Data preprocessing tasks vary by domain and require <u>specialized feature engineering</u>.
 - Generalization between task, data and models is challenging.
 - Manual data labeling is <u>expensive</u> and doesn't scale well across multiple domains.
- Few-shot and cross-domain learning are hard in data preprocessing.
 - The scarcity of labeled data hampers the training of robust, generalizable models.
 - Transferring knowledge across domains is difficult, affecting model adaptability.

Entity Matching

Entity Matching (EM) Given a pair of tuples t_1 , t_2 , our task is to infer whether they refer to the same entity. Formulated as:

$$(Ins^{EM}, D^{EM}, (t_1, t_2)), C^{EM}), C^{EM} = \{match, mismatch\}$$

EM is a binary classification task.

Binary classification, requiring the model to have a complex and clear classification boundary.

Data Cleaning

<u>Data Cleaning (DC)</u> Given a tuple t and an attribute a_i , the data cleaning over a relational table is a process that identifies and repairs such cell with the correct values, with a few annotated tuples $D^{\rm DC}$. Formulated as:

$$(Ins^{DC}, D^{DC}, (t, a_i), C^{DC})$$

DC is an open-domain generation task, which means the output domain for $C^{\rm DC}$ has no limits.

Generation task, requiring the model to have the ability to induce and apply rules.

Relation Extraction

Relation Extraction (RE) Given a web table T and a set of pre-defined knowledge graph (KG) relations \mathcal{R} , our task is to annotate a column $h \in T$ with a KG relation type $r \in \mathcal{R}$, such that all entities in column h hold the same relation r. Formulated as:

$$(Ins^{RE}, D^{RE}, (T, h), C^{RE}), C^{RE} = \mathcal{R}$$

RE is a close-domain ranking task.

Ranking task, requiring the model to have retrievalaugmentation and classification capabilities.

- 1. Can different preprocessing tasks be unified into a common framework in generative manner? (Multi-Task)
 - 2. Can **few-shot** labelling data from different tasks mutually boost each others performance?(**Data-Efficient**)
- 3. Can Sparse-Activated Mixture of Expert models(SMoE) outperform single dense models?(Computational-Efficient)

Limitation: Low-Resource DP in Database

- Expensive Labelling Cost:
 - Few-shot and biased labeled data
- Data Privacy Consideration:
 - Deployed with local environment with offline model
- Limitation of Computational Resource:
 - Deployed in Consumer-level Hardware, e.g. RTX 3090/4090

MELD: A Few-shot data preprocessing framework based on a mixture of experts

Challenge 1

<u>Problem:</u> Labeled data distribution is biased, insufficient in quantity, and lacks information.

<u>Solution:</u> A collaborative framework of retrieval—enhanced generation and data augmentation involving multiple experts.

Challenge 2

Problem: Expert models trained on biased few-shot samples overfit and fail to learn higher-order dependencies in downstream tasks.

<u>Solution:</u> Expert model training algorithm guided by Information Bottleneck theory.

Challenge 3

<u>Problem:</u> Lack of generalization ability across preprocessing tasks and universal features, hard to train and deploy with low resources.

<u>Solution:</u> MoE architecture with efficient streaming inference pipeline.

Unified Various DP Task as Generation Task with LLM

Theoretical Analysis

Entity Matching

Unified Task

Entity Matching (EM) Given a pair of tuples t_1 , t_2 , our task is to infer Representation whether they refer to the same entity. Formulated as:

$$(Ins^{\mathsf{EM}}, D^{\mathsf{EM}}, (t_1, t_2)), C^{\mathsf{EM}}), C^{\mathsf{EM}} = \{\mathsf{match}, \mathsf{mismatch}\}$$

Classification Task

Data Cleaning

Data Cleaning (DC) Given a tuple t and an attribute a_i , the data cleaning over a relational table is a process that identifies and repairs such cell with the correct values, with a few annotated tuples D^{DC} . Formulated as:

$$(Ins^{DC}, D^{DC}, (t, a_i), C^{DC})$$

Generation Task

Relation Extraction

Relation Extraction (RE) Given a web table T and a set of pre-defined knowledge graph (KG) relations \mathcal{R} , our task is to annotate a column $h \in T$ with a KG relation type $r \in \mathcal{R}$, such that all entities in column *h* hold the same relation *r*. Formulated as:

$$(Ins^{RE}, D^{RE}, (T, h), C^{RE}), C^{RE} = \mathcal{R}$$

Ranking Task

- Roee et al. 2023. In-context learning creates task vectors. arXiv preprint arXiv:2310.15916 (2023).
- Fan et al. 2024. Few-shot Adaptation of Multi-modal Foundation Models: A Survey. arXiv preprint arXiv:2401.01736 (2024).
- Nishanth et al. 2023. On the benefits of learning to route in mixture-of-experts models. EMNLP 9376–9396.

Theorem 1: Task Subspace

Different Task \mathcal{T}_i can be compressed to low-dimension Task Vector θ_i for LLM

> θ_i is in Low-Dimension Intrinsic Task Subspace V

Theorem 2: Error Bound

In same Parameter Size. Dense Single Model falls short in Multi-Task Learning Than SMoE Model in Error Bound

Theorem 3: Convergence

Router Network N for SMoE Model Dispatch samples to experts by **Cluster in Latent Space**

How LLM learns specific DP Task \mathcal{T}_i

Clusters in Subspace V For Task Vector $\boldsymbol{\theta_i}$

Cross-task data augmentation based on RAG models

- Retrieve related examples and contextual information across tasks and domains to mitigate the issues of insufficient and biased labeled data.
- Generate new samples using self-supervised labeled data to expand the training set.
- Train a unified retrieval-enhanced framework using contrastive learning.

Entity

Matchina

Column Type

Annotation

Data

Imputation

 $\boldsymbol{\mathcal{E}}_1$

 $\boldsymbol{\mathcal{E}}_2$

Entity: $(t_1, t_2) \rightarrow$

Label: Match

Value:

(Geneve, Bale)

Brand

Multi-expert collaborative enhancing based on meta-path search

- Search for multi-expert collaborative paths to guide data augmentation.
- Experts focus on various data views, offering complementary advantages.
- Address information loss in low-quality data.

Preliminary: Information Bottleneck(IB)

Concept of Information Bottleneck:
Minimal Sufficient

Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information bottleneck principle. In 2015 ieee information theory workshop (itw). IEEE, 1–5.

Expert model training with Information Bottleneck(IB) theory

Motivations and Observations

- \circ **Diverse** and **Augmented** training data, even from different domain, can activate the generalization ability for LLM, leveraging the overfitting problem, caused by the small size of $|\mathbf{Q}|$. (Min of MI)
- A well trained expert e_i should capture the **intrinsic and high-level** common feature from a diverse of training data $\mathbf{Q} \cup \mathbf{Q}^*$, and make the right decision within the constrained domain $O.(\mathsf{Max} \ \mathsf{of} \ \mathsf{MI})$

Formulation of Min-Max in training LLM-based e_i

Training data should be **Diverse** and **Augmented**

Expert Model should Learn the Task Sufficient

 $\min_{\theta_{\mathsf{RAG}}} \max_{\theta_{\mathsf{LLM}} \in \mathcal{M}_g} I(\mathcal{M}_g(\mathbf{Q}); \mathcal{M}_g(\mathsf{RAG}(\mathbf{Q}))) \tag{1}$

- o Maximize: for $\mathbf{q} = (q_k, l_k) \in \mathbf{Q} \cup \mathbf{Q}^*$, maximize the mutual information of label l_k and the model output o_k .
- o Minimize: for $\mathbf{q} \in \mathbf{Q}$, minimize the mutual information of $\frac{1}{|\mathbf{Q}^*|} \Sigma_{\mathbf{q}' \in \mathbf{Q}^*} I(\mathbf{q}; \mathbf{q}')$

Input: Task T_i , Labeled data X_i

Output: Expert Model e_i

Findings:

Diverse and augmented training data address biased distribution and overfitting in few-shot learning

 $Min\ I(Z;X)$

Training data should match the task's correct distribution, enabling models to capture inherent, high-level features and associations

Max I(Z; Y)

Explicitly optimize by fine-tuning large models to perform task T_i

Implicitly optimize by adjusting parameter θ of RAG to maintain diversity in training data X_i

Methods:

Min-Max optimization

Router Network Optimization based on IB theory

Observation

- \circ For a given query q_u , which represents one or more entities ent, such raw data can be applied to different tasks in \mathcal{T} naturally. So the label should be $l_u^1, \dots, l_u^{|\mathcal{T}|}$
- \circ Top- τ experts should be diverse enough, that their responding o_1, \dots, o_u with q_u should be diverse enough with each other. (Min of MI)
- o Top- τ experts should cover the domain of q_u , which means experts \mathbf{E}' should output correct o_1, \dots, o_u with label $l_u^1, \dots, l_u^{\tau}(\mathsf{Max} \ \mathsf{of} \ \mathsf{MI})$

- Input: Experts Set e_1, \dots, e_n
- Output: Gated network \mathcal{N} that can assign given query q to top-k relevant experts set

Formulation of Min-Max in training Gated Network ${\cal N}$

Expert selection should be task-relevant to q_u

Expert selection should ensure <u>diversity</u>

$$\max \sum_{e_i \in \mathcal{N}(q_u)} I(e_i(q_u^i); l_u^i),$$

 $\min \sum_{e_i,e_j \in \mathcal{N}(q_u)}^{i \neq j} I(e_i(q_u^i);e_j(q_u^j)),$ (2) where

 $|\mathcal{N}(q_u)| = \tau.$

Equivalently, if q_u originally belongs to task T_i , then any $(q_u^j, l_u^j), i \neq j$ can be regarded as an augmented output from $RAG(q_u)$

Optimization Objective For Gated Network \mathcal{N} :

Mixture-of-Experts Implementation

Unary RPC ------>
Stream Response ----

LLM

KvCache

LoRA

GPU

LoRA

- Divide and Conquer, Initialize different expert model for different task
- During Inference, mix-up expert weight for cross-domain generalization
- IB-Theory guided training for multi-expert allocation <u>per query</u>
- <u>Multi-Tenant LoRA Serving</u> for multi-expert inference, support 1 base model and up to 24 experts in single GPU, without merging and quantization

Fig.1 MoE Structure Framework

Chen, Lequn, et al. "Punica: Multi-tenant lora serving." *arXiv preprint arXiv:2310.18547* (2023).

Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." *Proceedings of the 29th Symposium on Operating Systems Principles*. 2023.

Dataset and Experiment Setting

Downstream Task: 19 datasets over 10 DP tasks, all with few-shot labelling setting(1%-10%)

- Entity Matching, EM, F1 score
- Entity Blocking, BLK, Top-1 Recall
- Error Detection, ED, F1 score
- Data Cleaning, DC, F1 score
- Column Type Annotation, CTA), Micro-F1
- Relation Extraction, RE, Micro-F1
- Entity Linking, EL, Top-1 Accuracy
- Schema Matching, SM, F1 score
- Data Imputation, DI, Top-1 Accuracy
- Attribute Value Extraction, AVE, Top-1 Accuracy

Tabular Interpretation Learning

Entity Resolution

- Data Cleaning

P Data Imputation

Baseline Model:

- 12 non-LLM baselines (Including Feature Engineer/Rule-Discovery/Transformer-Based Deep Learning Method)
- Jellyfish/ExtractGPT (Pre-trained LLM methods in 13B/70B)
- MoE Model(Mixtral 8*7B)

Backbone Model for each Expert: Mistral-7B

Backbone Model for RAG: Roberta-XL

<u>Methods.</u> We categorized the baselines as follows. (1) Non-LLM methods [86]. (a) ED: Raha[79], (b) DI: IPM[82], (c) Blocking: DeepBlocker[107], (d) EM: Ditto[72] and PromptEM[113], (e) DC: Baran[78] and Garf[92], (f) CTA: RECA[31], (g) RE/EL: TURL[26], (h) SM: CONSchema[117] and SMAT[128], and (k) AVE: MAVE[121].

Task	Dataset	#Instance (few-shot)	#Instance (All)	
	Amazon-Google[72]	100	6874	
Entity Matching	Walmart-Amazon[72]	100	6144	
Entity Matching (EM)	WDC-All[72]	100	7229	
&	Ant-Buy[72]	100	5743	
Blocking	Semi-Text-Watch[113]	80	5540	
	Semi-Text-Computer[113]	80	12538	
Error Detection(ED) & Data Cleaning(DC)	Hospital[78]	20	1000	
	Rayyan[78]	20	1000	
	Beer[78]	20	2410	
Column Type Annotation(CTA)	SemTab19[31]	1920	7603	
	WebTables[31]	15420	61023	
Relation Extraction(RE)	WikiGS-RE[26]	6502	65026	
Entity Linking(EL)	WikiGS-EL[26]	5441	54410	
C-1 M-+-1:/CM)	CMS[128]	20505	20505	
Schema Matching(SM)	Synthea[128]	23709	23709	
Europe Mingle	Walmart[82]	242	2421	
Data Imputation(DI)	Amazon[82]	2001	20013	
	Restaurant[82]	86	864	
Attribute Value Extraction(AVE)	OA-mine[5]	286	1452	

Experiment 1 Main Result

Task	Dataset	MELD Few-shot	Non-LLM Baseline Few-shot	LLM Baseline Few-Shot	Mixtral Few-shot	Task	Dataset	MELD Few-shot	Non-LLM Baseline Few-shot	LLM Baseline Few-Shot	Mixtral Few-shot
	Amazon- Google 83.41(74.12)	00.11(=1.10)			(n)		Hospital	98.51	95.23	89.41	69.14
		61.88(50.47)	65.98(/)	51.28(/)	ED	Rayyan	90.37	80.21	69.67	31.96	
EM	Walmart- Amazon 91.42(78.80) 79	50 00/50 01)	10.00(1)	00 50(1)		Beer	99.10	100.00	81.64	70.23	
&		79.09(58.21) 42.	42.03(/)	39.78(/)	СТА	SemTab19	89.35	69.70	87.77	89.35	
(BLK)	WDC-All	91.97(31.50)	34.35(1.70)	49.80(/)	48.97(/)	CIA	WebTables	96.30	90.93	94.77	80.16
	Ant-Buy	91.12(86.20)	84.89(40.66)	71.40(/)	60.42(/)	RE	WikiGS-RE	89.30	73.50	60.38	65.88
	Semi-Text- Watch 78.28(59.23) 23.6	00 (0(0 (1)	60(2.66) 54.27(/)	40.55(/)	EL	WikiGS-EL	87.05	60.55	82.20	73.25	
		23.60(2.66)			CM	CMS	60.27	50.00	59.29	31.01	
	Semi-Text- Computer 86.46(30.85)	33.90(8.09) 76.80(/	7(90(/)	72 15(/)	SM	Synthea	56.00	38.50	40.00	23.53	
			76.80(/)	73.15(/)		Walmart	87.50	65.70	57.69	79.82	
DC	Hospital	95.01	67.10	49.30	53.20	DI	Amazon	75.12	60.35	60.05	62.62
	Rayyan	82.15	28.50	9.39	6.68		Restaurant	93.10	37.50	68.97	72.41
	Beer	97.30	90.31	51.30	56.27	AVE	OA-mine	74.62	67.00	65.70	77.36

MoE Framework is suitable for few-shot learning and multi-task learning

Search and retrieval across different domains and task, can alleviate biased distribution and few-shot labelling

Experiment 2 Inference Efficiency

Figure 6: Efficiency among different LLMs-based models (4-bit quantization for Jellyfish and Mixtral on 1×3090)

- Based on vLLM 0.40.0 in January 2024, maybe changed due to MoE kernel optimization.

Experiment 3 Cross-Domain and Cross-Task

Table 2: Cross-Dataset(C-D) and Cross-Task(C-T)

- Only 6 experts over three different tasks.
- C-D: Cross-Dataset, e.g. **exclude all labeled data** for Amazon-Google, when inference on such task
- C-T: Cross-Task, e.g. exclude all **Entity Matching labeled/unlabeled data**, when inference on related dataset.

Task	Dataset	MELD C-D	MELD C-T	LLM Baseline C-D	LLM Baseline C-T	Mixtral C-D	Mixtral C-T
EM	Amazon-Google	69.05	67.95	18.58	18.58	43.23	43.23
	Semi-Text-Watch	65.07	51.13	20.52	20.51	37.12	37.12
CTA	SemTab19	76.84	61.21	15.79	7.96	64.83	61.64
	WebTables	86.76	88.95	38.92	14.29	79.72	67.64
DI	Walmart	54.80	54.80	43.26	17.86	79.82	78.85
	Restaurant	75.86	75.86	68.96	6.95	72.43	58.62

MELD have the least performance drop in domain adaptation

Experiment 4 Ablation Study

Table 3: Performance for Ablation Study							
Task	Dataset	MELD w/o MoE	MELD w/o RAG	MELD w/o Meta-Path	MELD with Mixtral		
	Amazon-Google	76.70	69.21	62.52	77.85		
	Walmart-Amazon	87.66	81.44	79.55	91.03		
EM	WDC-All	90.38	83.16	91.73	91.32		
	Ant-Buy	87.58	85.75	90.12	85.26		
	Semi-Text-Watch	70.78	55.07	39.89	75.42		
	Semi-Text-Computer	79.49	42.02	63.74	81.98		

- MELD w/o MoE: Delete Router Network, directly apply task-corresponding expert. (Decrease Parameter-Level Diversify)
- MELD w/o RAG: Delete RAG Module, each task is trained by excluding cross-task and cross-dataset samples. (Decrease Distribution-Level Diversify)
- MELD w/o meta-path: Delete Meta-Path based data augmentation (Decrease Information-Level Diversify)
- MELD with Mixtral: Replace expert model with Mixtral, replace Router Network with Mixtral build-in layer.

Experiment 5 Visualization

Figure 7: Performance for different number of experts

Increasing expert number may lead to more noise in parameter-level

Table 6: Performance compared with GPT-4

Task	Dataset	MELD Few-shot	GPT-4	LLM Baseline Few-Shot	Mixtral Few-shot
EM	Amazon-Google	83.41	74.21	65.98	51.28
	Walmart-Amazon	91.42	90.27	42.03	39.78
	Ant-Buy	91.12	92.77	71.40	60.42
SM	CMS	60.27	59.29	59.29	31.01
	Synthea	56.00	66.67	40.00	23.53
DI	Restaurant	93.10	97.75	68.97	72.41
AVE	OA-mine	74.62	80.20	65.70	77.36

Comparison with Online Model

Heatmap for expert assignment weights

Code/Full Version Paper is available at: https://github.com/authurlord/MELD

Future Work and Discussion

- In which level should we apply expert assignment?
 - Token-Level(Switch Transformer/ Mixtral/ Qwen-MoE)
 - Sentence/Query Level(Unicorn/ MELD)
 - Cluster Level (MoCLE)
 - Task Level

- Unicorn: A Unified Multi-Tasking Matching Model
- 2. Mixture of Cluster-conditional LoRA Experts for Vision-language Instruction Tuning