

Efficient Mixture of Experts based on Large Language Models for Low-Resource Data Preprocessing

Mengyi Yan¹ Yaoshu Wang^{*2} Kehan Pang¹ Min Xie² Jianxin Li^{*1}

¹Beihang University ²Shenzhen Institute of Computing Sciences

A. Introduction

- Context: Data preprocessing (DP) is essential for transforming raw, erroneous data into a usable format, serving as the backbone in the data mining process.
- > Challenges
 - Manual Design per Task: Traditional DP methods require extensive manual intervention to craft domain-specific rules or task-specific model design, leading to scalability issues.
 - Labelling Cost: These manual and model-based approaches are not only time-consuming but also incur significant labelling costs.
 - ➤ Inflexibility: Current methods struggle to adapt to the diverse requirements of different data types and downstream tasks in dynamic environments.

- 1. Can different preprocessing tasks be unified into a common framework in generative manner? (Multi-Task)
- 2. Can <u>few-shot</u> labelling data from different tasks mutually boost each others performance?(**Data-Efficient**)
- 3. Can <u>Sparse-Activated Mixture of Expert models(SMoE)</u> outperform single dense models?(**Computational-Efficient**)

B. Motivation

- 1. Increasing Data Complexity: The variety and complexity of data increase, necessitating more sophisticated preprocessing techniques that can handle such diversity efficiently.
- 2. Scalability Issues: Existing DP methods often do not scale well with increasing data volumes or variety, making them unsuitable for large-scale applications in real-world scenarios.
- 3. Utilizing One-for-All LLM for diverse tasks: Despite the recent progress in machine learning and large language models for data quality, their potential in various DP tasks, especially in low-resource settings, remains largely untapped.
- 4. Resource Constraints: There's a critical need for cost-effective DP solutions that require minimal resources, making advanced data preprocessing accessible to smaller organizations or projects with limited <u>labelling</u> and <u>computational</u> budgets, also regarding privacy concerns.

C. Problem Definition

• **Data Preprocessing:** Discovery, extraction, transformation, cleaning, and integration of data from diverse sources, supporting downstream tasks.

- Preliminary
 - Mixture of Experts (MoE): Architecture that dynamically assigns tasks to specialized networks, optimizing processing efficiency and adaptability.
 - Multi-task Learning(MTL): Leverages shared information across multiple tasks to improve generalization and performance.
- *Problem*. The problem studied in this paper is stated as follows.
 - Input: A set of tasks $\{T_1, \dots, T_n\}$ with few-shot training data \mathcal{X} in the low-resource DP setting. (w.r.t $\leq 10\%$ labelling data, deployed in consumer-level hardware.)
 - Output: An universal LLM-based system under the MoE architecture that is able to answer the (unseen) query of all T_i

D. Contribution

- ✓ **MELD Framework**: Introduction of a Mixture of Experts on Large Language Models for Data Preprocessing (MELD) optimized for low-resource environments.
- ✓ **Data Augmentation and Expert Optimize Techniques**: Development of novel tuning methods for expert, and cross-task data augmentation method, including retrieval-augmented generation and meta-path data augmentation.
- ✓ **Theoretical Advancements**: Proof of concept that MoE in MELD outperforms single expert setups and demonstrates efficient expert allocation.
- ✓ **Resource Optimization**: Demonstrates reduced computational overhead while maintaining high accuracy.
- ✓ Enhanced Specialization: Improved task-specific performance through expert specialization, and mixture of different experts.

E. Theoretical Analysis

1. Task Subspace: Different Task \mathcal{T}_i can be compressed to low-dimension Task Vector θ_i for LLM.

- 2. Error Bound: In same parameter size, dense model falls short in multi-task learning than MoE model in error bound.
- 3. Router Network Efficacy: Demonstrating that the router network effectively directs data to the most suitable experts, optimizing resource allocation.
- 4. Information Bottleneck: Utilization of an information bottleneck in training enhances the model's focus and efficiency by reducing irrelevant data processing.

F. MoE architecture based on LLMs

• Enhanced RAG Component: Using a fine-tuned Sentence-BERT model with contrastive learning, to support effective <u>cross-task and cross-domain</u> information retrieval for LLM.

- Meta-Path Search Component: Processing expert sets and enlarged data to establish a meta-path that augments and optimizes training data for specific tasks in sequence.
- Expert Refinement: Applying information bottleneck theory to refine expert accuracy and relevance, enhancing the performance of each expert.
- Router Network: Implementing a multi-gate network to select top experts for each query, optimizing resource allocation and improving query response efficiency.

G. Experiment

- **Performance**: Evaluated across 19 datasets and 10 tasks, MELD outperforms state-of-the-art methods in terms of effectiveness and efficiency in low-resource environments.
- Theoretical Validation: Empirical evidence supports theoretical claims about MoE superiority and effective data routing via the router network.
- Resource Utilization: MELD demonstrates efficient use of computational resources, optimizing both time and hardware constraints.
- Adaptability: MELD shows significant improvements in handling domainspecific tasks with limited annotated data.

	Table 2: Cro	ss-Data	set(C-I)) and Cı	coss-Tasl	κ(C-T)	
Task	Dataset	MELD C-D	MELD C-T	LLM Baseline C-D	LLM Baseline C-T	Mixtral C-D	Mixtral C-T
EM	Amazon-Google	69.05	67.95	18.58	18.58	43.23	43.23
£IVI	Semi-Text-Watch	65.07	51.13	20.52	20.51	37.12	37.12
CTA	SemTab19	76.84	61.21	15.79	7.96	64.83	61.64
	WebTables	86.76	88.95	38.92	14.29	79.72	67.64
DI	Walmart	54.80	54.80	43.26	17.86	79.82	78.85
DI	Restaurant	75.86	75.86	68.96	6.95	72.43	58.62

Full version, resource and code available at https://github.com/authurlord/MELD