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Many real-world applications show growing demand for the prediction of long sequence 
time-series, such as electricity consumption planning. Long sequence time-series forecasting 
(LSTF) requires a higher prediction capacity of the model, which is the ability to 
capture precise long-range dependency coupling between output and input efficiently. 
Recent studies have shown the potential of Transformer to accommodate the capacity 
requirements. However, three real challenges that may have prevented expanding the 
prediction capacity in LSTF are that the Transformer is limited by quadratic time 
complexity, high memory usage, and slow inference speed under the encoder-decoder 
architecture. To address these issues, we design an efficient transformer-based model 
for LSTF, named Informer, with three distinctive characteristics. (i) a ProbSparse self-
attention mechanism, which achieves O(L log L) in time complexity and memory usage, 
and has comparable performance on sequences’ dependency alignment. (ii) the self-
attention distilling promotes dominating attention by convolutional operators. Besides, 
the halving of layer width is intended to reduce the expense of building a deeper 
network on extremely long input sequences. (iii) the generative style decoder, while 
conceptually simple, predicts the long time-series sequences at one forward operation 
rather than a step-by-step way, which drastically improves the inference speed of long-
sequence predictions. Extensive experiments on ten large-scale datasets demonstrate that 
Informer significantly outperforms existing methods and provides a new solution to the 
LSTF problem.

© 2023 Published by Elsevier B.V.

1. Introduction

Time-series forecasting is a critical ingredient across many domains, such as sensor network monitoring [1], energy and 
smart grid management, economics and finance [2], and disease propagation analysis [3]. In these scenarios, we can leverage 
a substantial amount of time-series data on past behavior to make a forecast in the long run, namely long sequence time-
series forecasting (LSTF). It is generally accepted that society places high value on targeting long-run trends rather than 
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Fig. 1. (a) The long sequence time-series forecasting can cover an extended period than the short sequence predictions, which makes vital distinction 
in policy-planning and investment-protecting. (b) The prediction capacity of existing methods limits the long sequence’s performance, i.e., starting from 
length=48, the MSE rises unacceptably high, and the inference speed drops rapidly.

the next-step status. For instance, the long-term business: forecasting the electricity consumption on clients in a long 
period helps to estimate the region transformer power load and manage the power supply [4]; the long-term climate: 
analyzing the rainfall change based on more than a hundred years’ record helps to forecast the semi-century climate and 
build coping strategies [5]; the fine-grained management: forecasting the hourly product supply helps to optimize the 
inventory management, staff scheduling and topology planning, and is a crucial technology for most aspects of supply chain 
optimization [6]. However, prevailing forecasting methods are mostly designed under conservative settings, like predicting 
48 points or less [7–12].

The increasingly long sequences strain the models’ prediction capacity to the point where this trend is holding the 
research on LSTF problems. As an concrete example, we use the Long Short Term Memory (LSTM) network to predict the 
hourly temperature of an electrical transformer station. The longer forecasting helps to better estimate the power load and 
transformer states. We enlarge the prediction horizon from the short-term period (12 points, 0.5 days) to the long-term 
period (480 points, 20 days) in Fig. 1. The overall performance gap is substantial when the prediction length is greater than 
48 points (the solid star in Fig. 1(b), where the mean squared error (MSE) rises to unsatisfactory performance, the inference 
speed gets sharp drop, and the LSTM model starts to fail.

The major challenge for LSTF is to expand the prediction capacity to meet the increasingly long sequence prediction de-
mand, which requires (a) extraordinary long-range alignment ability and (b) efficient operations on long sequence inputs 
and outputs. Recently, Transformer models have shown superior performance in capturing long-range dependency than Re-
current Neural Network (RNN) models. The self-attention mechanism in Transformer can reduce the maximum length of 
network signals traveling paths into the theoretical shortest O(1) and avoid the recurrent structure, whereby Transformer 
shows great potential for the LSTF problem. Nevertheless, the self-attention mechanism violates requirement (b) due to its 
L-quadratic computation and memory consumption on L-length inputs/outputs. Some large-scale Transformer models pour 
resources and yield impressive results on NLP tasks [13], but the training on dozens of GPUs and expensive deploying cost 
make these models unaffordable on the real-world LSTF problems. The efficiency of the self-attention mechanism and Trans-
former architecture becomes the bottleneck of applying them to LSTF problems. Thus, in this paper, we seek to answer the 
question: can we improve Transformer models to be computation, memory, and architecture-efficient, as well as maintaining higher 
prediction capacity?

Vanilla Transformer [14] has three significant limitations when solving the LSTF problem:
1. The quadratic computation of self-attention. The atom operation of self-attention mechanism, namely canonical dot-

product, causes the time complexity and memory usage per layer to be O(L2).
2. The memory bottleneck in stacking layers for long inputs. The stack of J encoder/decoder layers makes the total mem-

ory usage to be O( J · L2), which limits the model’s scalability in receiving long sequence inputs.
3. The speed plunge in predicting long outputs. The dynamic decoding of vanilla Transformer makes the step-by-step 

inference as slow as RNN-based model, as shown in Fig. 1(b).
There are some prior works on improving the efficiency of self-attention. The Sparse Transformer [15], LogSparse Trans-
former [16], and Longformer [17] all use a heuristic method to tackle the limitation 1 and reduce the complexity of 
self-attention mechanism to O(L log L), where their efficiency gain is limited [18]. Reformer [19] also achieves O(L log L)

with locally-sensitive hashing self-attention, but it only works on extremely long sequences. More recently, Linformer [20]
claims a linear complexity O(L), but the project matrix can not be fixed for real-world long sequence input, which may 
have the risk of degradation to O(L2). Transformer-XL [21] and Compressive Transformer [22] use auxiliary hidden states to 
capture long-range dependency, which could amplify the limitation 1 and be adverse to break the efficiency bottleneck. All 
these works mainly focus on the limitation 1, and the limitation 2&3 remains unsolved in the LSTF problem. To expand the 
prediction capacity, we tackle all these limitations and achieve improvement beyond efficiency in the proposed Informer.

To this end, our work delves explicitly into these three issues. We investigate the sparsity in the self-attention mecha-
nism, make improvements of network components, and conduct extensive experiments. The contributions of this paper are 
summarized as follows:
2
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• We propose Informer to successfully expand the prediction capacity in the LSTF problem, which validates the 
Transformer-like model’s potential value to capture individual long-range dependency between long sequence time-series 
outputs and inputs.

• We propose the ProbSparse self-attention mechanism to efficiently replace the canonical self-attention. It achieves the 
O(L log L) time complexity and O(L log L) memory usage on dependency alignments.

• We propose the self-attention distilling operation to privilege dominating attention scores in J -stacking layers and 
sharply reduce the total space complexity to be O((2 − ε)L log L), which helps receiving long sequence input.

• We propose a generative style decoder to acquire long sequence output with only one forward step needed, simultane-
ously avoiding cumulative error spreading during the inference phase.
A preliminary version of this work appeared in the 35th proceedings of the AAAI Conference on Artificial Intelli-

gence [23]. This journal version involves several improvements in enhancing the previous model from the following aspects. 
First, we give a new proof for the bound of the ProbSparse self-attention mechanism without large variance assumptions, 
further broadening the model’s application scope. Second, we give new proof for the empirical approximation of the random 
sampling strategy in the query sparsity measurement, which further verifies its efficacy. Third, we propose a new mixed 
multi-head attention mechanism in the decoder, which improves the efficiency of the decoder in long prediction. Besides, 
we have conducted comprehensive experiments on more datasets and performed more detailed analyses for Informer.

2. Related work

We provide a literature review of the long sequence time-series forecasting (LSTF) problem below. LSTF problem is 
a special case of the time-series forecasting problem. So technically, the existing time-series forecasting models can be 
directly applied to the LSTF. However, there will be some disadvantages in the real-world execution or application, such as 
accuracy, speed and resource occupation. So, we show the related works including time-series forecasting methods, long 
sequence time-series input problems, attention models, and transformer-based models.

Time-series Forecasting. Existing methods for time-series forecasting can be roughly grouped into two categories: classi-
cal models and deep learning methods. Classical time-series models serve as a reliable workhorse for time-series forecasting, 
with appealing properties such as interpretability and theoretical guarantees [24,25]. Modern extensions include the sup-
port for missing data [26] and multiple data types [27]. Deep learning methods develop the prediction paradigm by applying 
RNN and their variants in a sequence-to-sequence manner, achieving cutting-edge performance [7–9]. Despite the substantial 
progress, existing algorithms still fail to predict long sequence time series with satisfying accuracy. Typical state-of-the-art 
approaches [26,27], especially deep learning ones [9,11,28,29,12], remain as a sequence to sequence prediction paradigm 
with step-by-step processes, which have the following limitations: (i) Even though they may be accurate for one-step 
prediction, they often suffer from the accumulated error through the dynamic decoding, resulting in the fail for LSTF prob-
lem [10,11]. The prediction accuracy decays along with the increase of the predicted sequence length. (ii) Due to the 
problem of vanishing gradient and memory constraint [30], most existing methods cannot learn from the past behavior of 
the whole history of the time-series. As discussed in the introduction section, we refer to the two limitations as the other 
side of the coin in expanding the prediction capacity. We design Informer to address the above limitations.

Besides, the long sequence time-series input (LSTI) problem also admits a long sequence of input data, which applies to 
the second limitation, but it has few requirements on the prediction capacity as it is in the LSTF problem. We will explore 
some works on the LSTI problem and expound on the difference to the LSTF problem.

Long sequence time-series input problem. In practical engineering, the researcher could truncate the inputs, summarize 
the sequences, or sample each batch to handle a long input sequence on simple models. However, when making precise 
predictions, valuable long-term dependency may be lost in this way. Instead of modifying inputs, Truncated BPTT [31] only 
uses last time steps to estimate the gradients in weight updates, and Auxiliary Losses [32] enhance the gradients flow by 
adding auxiliary gradients. Other attempts include Recurrent Highway Networks [33] and Bootstrapping Regularizer [34]. 
Dual-path RNN [35] is proposed to model extremely long sequences by organizing RNN blocks in the layer-wise stacking. 
These methods try to improve the gradient flows inside the recurrent network architecture, but their performance gain is 
limited when the sequence length excessively grows. The CNN-based methods [36,37] use the convolutional filter to capture 
the long-term dependency, and their receptive fields grow exponentially with the stacking of layers, which helps reduce 
computing cost but hurts the sequence alignment. For the LSTI problem, the main task is to enhance the model’s ability to 
receive the long sequence and extract the long-range dependency from the inputs. We noticed that LSTF needs to establish 
the long-range dependency between outputs and inputs, namely the prediction capacity requires the model to predict a 
long sequence from inputs, and the LSTI techniques may help but are not feasible for it directly.

Attention model. Attention in the deep learning field is first proposed to address the computation problem of large im-
ages by selecting and only processing a sequence of regions. The attention model could build a correlation between different 
components and utilize the distinct data, which may benefit the development of the LSTF model. Then Bahdanau et al. [38]
proposed the addictive attention to improve the word alignment of the encoder-decoder architecture in the translation task, 
which is the first work to use attention mechanism in sequential data. Then, its variant [39] has proposed the widely used 
location, general, and dot-product attention, and another variant [40] employed attention for speech recognition. Among all 
types of attention mechanisms, a special form is called self-attention, in which each element in the input sequence is used 
for calculating other elements’ relevance in the same input sequence.
3
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Fig. 2. Overview of the Informer model. The left part is the Encoder, and it receives massive long sequence inputs (the first projection + the second/third 
embeddings). We replace the canonical self-attention with the proposed ProbSparse self-attention. The middle trapezoid is the self-attention distilling 
operation designed to sharply reduce the network stacking size by extracting the principal information. We draw three replicas of layer stacking in red, 
blue, and green tensor paths, and they are having-cascading selected to make the output’s size aligned. The concatenated feature map builds a more robust 
representation that tends to generalize. For the right part, the Decoder receives long sequence inputs, pads the target elements into zero, measures the 
weighted attention composition of the feature map, and instantly predicts output elements (orange series) in a generative style. For the cross attention, we 
still maintain the vanilla one. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The prevalent self-attention model, i.e., Transformer [14], has recently been proposed as new thinking of sequence mod-
eling and has achieved great success, especially in the NLP field [41–44]. Moreover, the power of the Transformer’s better 
sequence alignment ability has been validated by applying it to other fields such as speech [45], music [46], and image [47]. 
Furthermore, some works [48,49,16] have borrowed the architecture of Transformer and applied it to time-series forecasting 
problems for its ability of powerful sequence alignment.

Transformer-based model. The most related works [48,49,16] all start from a trail on applying Transformer in time-
series data and fail in the LSTF problem as they use the vanilla Transformer. And some works [15,16] noticed the sparsity in 
the self-attention mechanism and we have discussed them in the main context. In our work, the Informer takes advantage 
of the Transformer’s sequence alignment ability and makes a delicate design to streamline the calculation of self-attention 
which makes it amenable to the LSTF problem.

3. Preliminary

3.1. Sequence to sequence forecasting

Recurrent neural networks (RNN) based Encoder-Decoder architecture [50,30] has been established as a general sequence 
to sequence framework in prediction tasks. In the rolling forecasting setting with a fixed size window, a t-th sequence 
input is a series of vectors X t = {xt

1, . . . , x
t
Lx

| xt
i ∈ Rdx } of Lx elements and its target is the corresponding vectors Yt =

{yt
1, . . . , y

t
L y

| yt
i ∈Rdy }.

Long Sequence Time-series Forecasting (LSTF). The LSTF problem aims to predict the target sequence Yt from the 
input sequence X t . The LSTF problem encourages a longer output’s length L y than previous works [50,30] and the feature 
dimension is not limited to univariate case (dy ≥ 1).

Encoder-Decoder Architecture. In the literature, most models are devised to “encode” the input representations X t into 
hidden state representations Ht = {ht

1, . . . , h
t
Lh

} and “decode” the output representations Ŷt from Ht . The inference usually 
involves a step-by-step process named “dynamic decoding”, where the decoder computes a new hidden state ht

k+1 from the 
previous state ht

k and other necessary outputs from the k-th step then predicts the (k + 1)-th sequence ŷt
k+1. Based on this 

scheme, there have been a number of related attempts to address the sequence to sequence forecasting modeling, and their 
main difference lies in the structure of recurrent networks and the input/output strategy. Our proposed Informer generally 
follows the encoder-decoder mechanism and the overall architecture is given in Fig. 2.

Input Representation. The RNN models [51,7,52,30,11,53] capture the time-series pattern by the recurrent structure itself 
and barely relies on time stamps. The vanilla transformer [14,41] uses the point-wise self-attention mechanism, and the 
time stamps contain local positional contexts. However, in the LSTF problem, the ability to capture long-range independence 
requires global information like hierarchical time stamps (week, month and year) and agnostic time stamps [54] (holidays, 
events). This information is hardly leveraged in canonical self-attention and consequent query-key mismatches between the 
encoder and decoder bring underlying degradation on the forecasting performance.
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Fig. 3. The input representation of Informer. The inputs’ embedding consists of three separate parts, a scalar projection, the local time stamp (Position) and 
global time stamp embeddings (Minutes, Hours, Week, Month, Holiday etc.)

In this work, a uniform input representation is given to enhance the global positional context and local temporal context 
of the time-series inputs. Fig. 3 gives an intuitive overview. Assuming we have the t-th sequence input X t and p types of 
global time stamps and the feature dimension after input representation is dmodel. We firstly preserve the local context by 
a fixed position embedding:

PE(pos,2 j) = sin(pos/(2Lx)
2 j/dmodel)

PE(pos,2 j+1) = cos(pos/(2Lx)
2 j/dmodel)

, (1)

where j ∈ {1, . . . , �dmodel/2�}. Each global time stamp is employed by a learnable stamp embeddings SE(pos) with a limited 
vocab size (up to 60, namely taking minutes as the finest granularity). That is, the self-attention’s similarity computation can 
have access to the global context, and the computation consumption is affordable for long inputs. To align the dimension, 
we project the scalar context xt

i into a dmodel-dim vector ut
i with 1-D convolutional filters (kernel width=3, stride=1). Thus, 

we have the feeding vector

X t
feed[i] = αut

i + PE(Lx×(t−1)+i, )+
∑

p

[SE(Lx×(t−1)+i)]p , (2)

where i ∈ {1, . . . , Lx}, and α is the factor balancing the magnitude between the scalar projection and local/global embed-
dings. We recommend α = 1 if the sequence input has been normalized.

4. Methodology

Existing methods for time-series forecasting can be roughly grouped into two categories. Classical time-series models 
serve as a reliable workhorse for time-series forecasting [24–27], and deep learning techniques mainly develop an encoder-
decoder prediction paradigm by using RNN and their variants [7–9]. Our proposed Informer holds the encoder-decoder 
architecture while targeting the LSTF problem. Please refer to Fig. 2 for an overview and the following sections for details.

4.1. Efficient self-attention mechanism

The canonical self-attention [14] is defined based on the tuple inputs, i.e., query, key and value, which performs the 
scaled dot-product as:

Acano(Q,K,V) = Softmax(
QK�
√

d
)V , (3)

where Q ∈RL Q ×d , K ∈RLK ×d , V ∈RLV ×d and d is the input dimension. To further discuss the self-attention mechanism, let 
qi , ki , vi stand for the i-th row in Q, K, V respectively. Following the similar formulation [55], the i-th query’s attention is 
defined as a kernel smoother in a probability form:

Acano(qi,K,V) =
∑

j

k(qi,k j)∑
l k(qi,kl)

v j = Ep(k j |qi)[v j] , (4)

where p(k j|qi) = k(qi,k j)/
∑

l k(qi,kl) and k(qi, k j) selects the asymmetric exponential kernel exp(qik�
j /

√
d). The self-

attention combines the values as outputs and acquires better representations based on computing the probability p(k j |qi). 
If the query Q and the key K are the same, the probability becomes trivial and the output is the mean of V. Otherwise, if the 
5
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Fig. 4. The self-attention scores. The Softmax probabilities were collected from a 4-layer canonical Transformer trained on the ETTh1 dataset. We draw the 
first and the last heads in the first layer and sort the scores by magnitude. Each point in the x-axis stands for an individual Query-Key pair.

query-key pairs are totally different, with similar dot-product magnitude, the output also has a high chance of being close 
to the mean of V. The mixture of similarity and dissimilarity in the probability establishes the self-attention mechanism. 
However, the probability computation requires the quadratic times dot-product computation and O(L Q LK ) memory usage. 
It becomes the major drawback of expanding prediction capacity when applying Transformer models in LSTF problems.

Some previous attempts have revealed that the distribution of self-attention probability has potential sparsity and they 
have designed “selective” counting strategies on all p(k j |qi) without significantly affecting the performance. The Sparse 
Transformer [15] incorporates both the row outputs and column inputs, in which the sparsity arises from the separated 
spatial correlation. The LogSparse Transformer [16] notices the cyclical pattern in self-attention and forces each cell to attend 
to its previous one by an exponential step size. The Longformer [17] extends the above two works to more complicated 
sparse configuration. However, they are limited to the theoretical analysis from heuristic methods and tackle each multi-
head self-attention with the same strategy, which narrows their further improvements.

To motivate our approach, we first perform a qualitative assessment on the learned attention patterns of the canonical 
self-attention. In Fig. 4, the first thousand pairs contribute the most attention scores but only occupy about 12% of all pairs 
and this makes a header field. The self-attention score “sparsity” forms a long tail distribution, i.e., a few dot-product pairs 
contribute to the major attention and others generate trivial attention. Then, the next question is how to distinguish them?

4.1.1. Query sparsity measurement
As we have discussed in Eq. (4), the i-th query’s attention on all the keys forms a probability p(k j|qi) and the attention’s 

output is its composition with values v. From the self-attention score’s sparsity illustrated in Fig. 4, most i-th query’s 
attention will not have the dot-product pairs that lie in the header field. The corresponding probability p(k j |qi) is close to 
a uniform distribution q(k j |qi) = 1/LK and the self-attention mechanism becomes a trivial sum of values V and is redundant 
to the residential input. Otherwise, one dominant dot-product pair emerges as a “step signal” in the uniform distribution q. 
The more alike pairs encourage the selected query’s attention probability distribution p away from the uniform distribution 
q. In this way, the “likeness” between the distributions p and q can be used to identify the “important” queries. Without 
loss of generality, we measure the “likeness” through Kullback-Leibler (KL) divergence:

K L(q||p) =
LK∑
j=1

1

LK
ln

1/LK

k(qi,k j)/
∑

l k(qi,kl)

= ln
LK∑

l=1

e
qi k�

l√
d − 1

LK

LK∑
j=1

qik�
j√

d
− ln LK

. (5)

Dropping the constant ln LK , we define the i-th query’s sparsity measurement as:

M(qi,K) = ln
LK∑
j=1

e
qi k�

j√
d − 1

LK

LK∑
j=1

qik�
j√

d
, (6)

where the first term is the Log-Sum-Exp (LSE) of qi on all the keys and the second term is the arithmetic mean on them. 
If the i-th query gains a larger M(qi, K), its attention probability p is more “diverse” and has a high chance to contain 
the dominate dot-product pairs in the header field of the long tail self-attention distribution. Note that we use the KL-
based measurement as a good choice for relative entropy, and its non-negative characteristic [56] is the friendly type for 
floating-point calculation. Other entropy-derived formulations could be explored in future work.
6
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Furthermore, we could build an empirical estimator K̂ L(q||p) to K L(q||p) for efficiently applying measurements. 
The commonly used method is k-nearest neighbor (kNN) method-based estimator [57]. Given a set of samples X̂ =
{X1, X2, . . . , XN} drawn i.i.d. from uniform distribution q, and another set Ŷ = {Y1, Y2, . . . , Y M} drawn i.i.d. from self-
attention distribution p. Without loss of generality, we assume the samples in these sets are sorted in increasing order [58]
and M ≤ N . Thus, Xi = (iLk)/N can be seen as N scales of N-bins histogram. Following the previous work [59], we derived 
a kNN-based estimator:

K̂ L(q||p) = 1

N

N∑
i=1

ln
νi

εi
+ ln

M

N − 1
, (7)

where εi is the distance between Xi and its k-th nearest neighbor in X̂\Xi , which makes εi = (lLk)/N a constant. The νi

represents the distance between Xi and its k-th nearest neighbor in Ŷ . We will show that random sampling contributes the 
best kNN estimator bias. And we also have the sibling sparsity measurement as:

M̂(qi,K) = 1

N

N∑
i=1

ln
νi

εi
. (8)

4.1.2. ProbSparse self-attention
Based on the proposed measurement, we have the ProbSparse self-attention by allowing each key to only attend to the 

u dominant queries:

A(Q,K,V) = Softmax(
QK�
√

d
)V , (9)

where Q is a sparse matrix of the same size of q and it only contains the Top-u queries under the sparsity measurement 
M(q, K). We can set the query counter as u = ln L Q to be consistent with our objective complexity. It makes the Prob-
Sparse self-attention only need to calculate O(ln L Q ) dot-product for each query-key lookup, and the layer memory usage 
maintains O(LK ln L Q ). However, the ln L Q may be too small for the LSTF problem’s “sparsity” self-attention assumption in 
Fig. 4. Take the input size equals 720 as an example, and there will be only about 0.9% dot-product pairs in the header field. 
Thus we add a constant sampling factor c into the query counter and let u = c · ln L Q , which makes the sampling factor a 
hyperparameter under LSTF problem settings.

Moreover, the ProbSparse Self-attention can generate different “important” queries with different sparsity patterns for 
each head. Specifically, we use a n-heads self-attention at identical layers, namely the Multi-head Attention:

MA(X) = Concat(head1, . . . ,headn)

where headk = A(Q,K,V)
, (10)

where Q = XWQ , K = XWK , V = XWV , and {WQ , WK , WV } ∈ Rdmodel×d are different subspaces’ projector. The Concat(·)
stands for the concatenate operation. We could derive that the ProbSparse attention varies with different projectors. This 
flexibility is the essential difference from the previous heuristic methods [16,17], which avoids severe information loss 
in fixed sparsity patterns. An appropriate head configuration could help build a more stable multi-head ProbSparse Self-
attention.

4.1.3. Max-mean measurement
However, the traverse of all the queries for the measurement M(qi, K) requires calculating each dot-product pairs, i.e., 

quadratically O(L Q LK ), besides the LSE operation has the potential numerical stability issue. Motivated by this, we pro-
pose an empirical approximation for the efficient acquisition of the query sparsity measurement. We will first present the 
theoretical analysis and then develop the approximation.

Lemma 1. For each query qi ∈ Rd and k j ∈ Rd in the keys set K, we have the bound as ln LK ≤ M(qi, K) ≤ max
j

{qik�
j /

√
d} −

1
LK

∑LK
j=1{qik�

j /
√

d} + ln LK . When qi ∈ K, it also holds.

Proof. For the individual qi , we can relax the discrete keys into the continuous d-dimensional variable, i.e. vector k j .
Firstly, we look into the minimal value. For each query qi , the first term of M(qi, K) becomes the log-sum-exp of the 

inner-product of a fixed query qi and all the keys, and we can define f i(K) = ln
∑LK

j=1 eqi k�
j /

√
d . From the Eq. (2) in the 

Log-sum-exp network [60] and its further analysis, the function f i(K) is convex. Moreover, the adding operation of f i(K)

and a linear combination of k j makes M(qi, K) to be a convex function for the fixed query. Then we can take the derivation 
of the measurement with respect to the individual vector k j as:
7
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∂M(qi,K)

∂k j
= eqi k�

j /
√

d∑LK
j=1 eqi k�

j /
√

d
· qi√

d
− 1

LK
· qi√

d
.

To reach the minimum value, we let 
∇M(qi) = 
0 and the following condition is acquired as qi k�
1 + ln LK = · · · = qik�

j +
ln LK = · · · = ln

∑LK
j=1 eqi k�

j . Naturally, it requires k1 = k2 = · · · = kLK , and we have the measurement’s minimum as ln LK :

M(qi,K) ≥ ln LK . (11)

Secondly, we look into the upper bound. If we select the largest inner-product max
j

{qik�
j /

√
d}, it is easy that

M(qi,K) = ln
LK∑
j=1

e
qi k�

j√
d − 1

LK

LK∑
j=1

(
qik�

j√
d

)

≤ ln(LK ·max
j

{qik�
j√

d
})− 1

LK

LK∑
j=1

(
qik�

j√
d

)

= ln LK +max
j

{qik�
j√

d
}− 1

LK

LK∑
j=1

(
qik�

j√
d

)

. (12)

Combine the Eq. (11) and Eq. (12), we have the final results. When the key set is the same with the query set, the above 
discussion also holds. �

Immediately, we adopt the upper bound and define the max-mean measurement as:

M(qi,K) = max
j

{qik�
j√

d
} − 1

LK

LK∑
j=1

qik�
j√

d

def= max
j

{qik
�
j } − mean

j
{qik

�
j }

. (13)

The max-operator in M(qi, K) is less sensitive to zero values and is numerical stable. Meanwhile, if we assumed that the 
k-th nearest neighbor has k < LK /2 in Eq. (7), we have M̂(qi, K) ≤ M(qi, K) by substituting individual elements.

The range of Top-u approximately holds in the boundary relaxation with Lemma 2 in Section 4.4. The Eq. (13) is similar 
to approximating skewness but it performs on the dot-product pairs. If the average of the i-th query-keys is away from the 
maximum, we deduce that at least one dominant query-key pair but all that the i-th query-keys pairs form a small long 
tail distribution in a query-wise manner. However, we do not need to go through all the query-key pairs in the quadratic 
calculation O(LK L Q ). Under the query-wise long tail distribution, we use the random sampling strategy to acquire ln LK
keys for each individual query. We compute L Q ln LK pairs in total. Then we select Top-u queries by applying the max-mean 
measurement on the cropped matrix. Note that our goal is to find the query-key pairs in the header field, but the max-
mean measurement favors most skewness distribution far from the uniform one, and the sampling strategy alleviates that 
by forcing the measurement focus not such a heavy-tailed distribution. If one query has more dominant pairs than others, it 
has a higher probability to rank as the Top-u queries. In the previous description, we omit the details of random sampling 
strategy to keep the consistency and we will discuss them separately in the following section.

4.1.4. Random sampling
The time-series are individual point inputs, and then the self-attention mechanism forms i.i.d. discrete distribution. Recall 

the Kullback-Leibler divergence in Eq. (5), the K L(q||p) measures the closeness of the unknown attention distribution p to 
the uniform distribution q. The sampling strategy aims to reduce the KL computation complexity from O(LK L Q ) to L Q ln LK
when selecting the dominating queries. The whole process could be considered as using the empirical estimator K̂ L(q||pi)

for original K L(q||p) and then applying the max-mean measurement in Eq. (13).
Our discussion will be organized into two parts. First, for arbitrary pi(x) ∈ P , we investigate K̂ L(q||pi) to isolate the 

bias. Limiting sample points to N = ln(Lk), we can draw a brief illustration. The pi(x)’s uniform sampling in increasing 
order can minimize the bias |E[K̂ L(q||p)] − K L(q||p)| for most conditions. Second, we empirically evaluated with numerical 
experiments with long-tail distributions.

Applying Assumption 2 (d = 1) [61], the estimation bias for K̂ L(q||p) becomes:

|E[K̂ L(q‖p)] − K L(q‖p)| = O
(
(min{M, N})− 2

3 ln min{M, N}
)

, (14)

under the following conditions:
8
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(a) if q(x) > 0, then p(x) > 0;
(b) P (q( X̂) ≤ t) ≤ μtγ and P (p( X̂) ≤ t) ≤ μtγ with constants μ, γ ∈ (0, 1];
(c) ||∇2q|| ≤ C0 and ||∇2 p|| ≤ C0, bounded for some constant C0;

(d) E 
[
‖ X̂‖s

]
≤ K , and E 

[
‖Ŷ ‖s

]
≤ K with constants s > 0, K > 0.

Condition (a) ensures the defined KL divergence is valid. Condition (b) is the tail assumption, in which a lower γ indicates a 
stronger tail, and the convergence for the bias of KL divergence will be slower. For example, γ = 1 for Gaussian distribution, 
γ = 0.5 for Cauchy distribution, and if q, p hold different γq, γp respectively, γ = min{γq, γp} [62]. Condition (c) forms the 
smoothness assumption, and condition (d) constrains max{νi} and max{εi}.

We provide the following corollary to illustrate that, if we draw M samples Ŷ (Y in matrix) i.i.d., however not in the 
full-length interval (0, Lk], but in a subset [L1, L2], the bias for the empirical estimation Eq. (7) will increase respectively. It 
indicates that random sampling, equivalent to a uniform sample in the full interval in increasing order, can minimize the 
estimation bias at a high probability.

Corollary 1. Given an uniform distribution q(x), cdf is Q (x), and an arbitrary distribution p(x), cdf is P (x), if we sample N i.i.d. points 
X̂ in interval (0, Lk] from q(x) and M i.i.d. points Ŷ in interval [L1, L2] from p(x), where [L1, L2] ⊂ (0, Lk]. Then the estimation bias 
Eq. (14) increases in proportional to (Lk)/(L2 − L1).

Proof. The parameters d, γ , M , N hold when not changing q and p distribution. However, if we constraint the sample 
interval for X̂, Ŷ from (0, Lk] to its subset [L1, L2], e.g. (P−1(0.5), Lk] referring to the latter-half interval i.i.d. sample strategy 
(like the Max strategy), the reduced distribution of p will be defined as:

p′(x) =
⎧⎨⎩0 P (x) < P−1(L1) or P (x) > P−1(L2)

p(x)

P−1(L2) − P−1(L1)
P−1(L1) ≤ P (x) ≤ P−1(L2)

, (15)

where μ should be updated to μ′ = μ/(P−1(L2) − P−1(L1)) considering the condition (b), and the other parameters hold.
Following Eq. (41) and Eq. (42) in [61], X̂, Ŷ will be divided into two support set S1, S2, where S p ⊂ (0, Lk], Sq ⊂ [L1, L2]

is the support set for distributions p and q respectively. Let V (S p) = N, V (Sq) = M , we have:

S1 =
{

y | p(y) >
2C1

cd
a2

M

}
, S2 = Sq\S1. (16)

Note that the term 2C1
cd

a2
M depending on parameters d, γ , M , N . According to Eq. (26) [61], I1, I3 are constant form when q

is a uniform distribution, and we only consider estimating the convergence speed of I2 into two intervals S1, S2:

|I2| =
∣∣∣∣E[

ln
P p(B(Y, ν))

c1νp(Y)

]∣∣∣∣
≤

∣∣∣∣E[
ln

P p(B(Y, ν))

c1νp(Y)
1 (Y ∈ S1)

]∣∣∣∣ +
∣∣∣∣E[

ln
P p(B(Y, ν))

c1νp(Y)
1 (Y ∈ S2)

]∣∣∣∣ . (17)

For S1, we apply the Eq. (47) and Eq. (53) respectively in [61]:∣∣∣∣E[
ln

P p(B(Y, ν))

c1νp(Y)
1 (Y ∈ S1)

]∣∣∣∣ ∝ V (S1)∣∣∣∣E[
ln

P p(B(Y, ν))

c1νp(Y)
1 (Y ∈ S2)

]∣∣∣∣ ∝ μ

. (18)

According to the division for Sq in Eq. (16), V (S1) increases as p(x) is replaced with p′(x), and p′(x) = p(x)/(P−1(L2) −
P−1(L1)) > p(x), x ∈ [L1, L2], which naturally leads to more elements x fall into S1, namely V (S1) increasing. It also applies 
to μ′ = μ/(P−1(L2) − P−1(L1)) > μ. Considering the Eq. (17), the estimation bias increases in proportion to (Lk)/(L2 −
L1). �

The Corollary 1 indicates that the best strategy to minimize the KL divergence estimation bias is random sampling, which 
is equivalent to uniform sampling �ln(Lk)� nodes from Ŷ in increasing order. Other i.i.d. sampling strategies can be briefly 
formulated as sampling M = �ln(Lk)� nodes i.i.d. in l intervals (0, L1] ∪ (L2, L3] ∪ . . . (Ll−1, Ll] ⊂ (0, Lk], and the bias also 
increases by using Eq. (17) for l times. Moreover, if p obeys a long-tail distribution, e.g. lognormal distribution, if we apply 
Max sample strategy in interval (P−1(0.5), Lk], since P−1(0.5) could be rather small (e.g., P−1(0.5) = μ(LogNormal(μ =
0.1, σ 2 = 1))) = e0.6), p′(x), μ in Eq. (15) increases little (3.7%), due to the nature of long-tail distribution that the tail-
part sample points are approximately uniform distributed in [P−1(0.5), Lk]. Thus, the Max sample strategy has a similar 
estimation bias to the random sample strategy in long-tail distribution conditions.
9
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Fig. 5. The histogram and KL divergence with different sample strategies (Gaussian distribution).

Fig. 6. The histogram and KL divergence with different sample strategies (Weibull distribution).

Fig. 7. The case study for the Gaussian distribution with a long-tailed variance.

To empirically estimate the KL divergence, we only select ten samples from the distribution p, and the bin number 
is set to 100. Fig. 5 stands for a Gaussian distribution N (μ = 3, σ 2 = 5), the random sampling strategy shows superior 
performance in reflecting the original distribution. Fig. 6 refers to a Weibull distribution in long-tail condition, in which 
over 30% of the sample points are in (0, 0.5], only random sampling can minimize the divergence estimation bias, while the 
max sampling shows potential. The experiment section will include a complete evaluation with real-world datasets.

We focus on the distribution family P = {p1, p2, · · · , pm}, the p can be approximated as a Gaussian Distribution bounded 
in (0, Lk] in real-world applications. As we discussed above, due to the long-tail distribution of the attention feature map, 
V ar(pi(x)) has drastic numerical fluctuation, which also affects the estimation of KL divergence. We provide a case study 
for this factor. In Fig. 7, a set of Gaussian distributions family P = {p1, p2, · · · , p200}, pi ∼ N (3, σ 2

i ), and the variance 
{σ 2

1 , σ 2
2 , · · · , σ 2

200} ∼ LogNormal(1, 1) in increasing order. The lognormal distribution is a typical long-tail distribution, and 
in this case, over 90% of variance ({σ 2

1 , σ 2
2 , · · · , σ 2

180}) is below 10, and most of the sample strategies have little bias with 
the actual KL divergence. However, in the extreme condition, which refers to {σ 2

181, σ
2
182, · · · , σ 2

200} > 10, sample points from 
the minimum-half or the central-half curves in p(x) lose much information from p(x). The difference is the KL divergence 
between a Gaussian distribution and a truncated Gaussian distribution [63]. However, random sampling and maximum-half 
sampling still minimize the KL divergence estimation.
10
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Algorithm 1: The pseudo-code for ProbSparse Self-attention.

Function forward(Q, K, V, c):
/* This is the single-head forward procedure. */

Input: tensor Q ∈RL Q ×d , K ∈RLK ×d , V ∈RLV ×d ; sampling factor c
Output: the self-attention feature map S

1 set u = c ln L Q and U = L Q ln LK // The hyperparameters.
2 randomly select U dot-product pairs as the cropping operator [·]U

3 set the sample matrix S̄ = [QK�]U

4 compute the measurement M = max(S̄) − mean(S̄) for each query

5 select Top-u queries under M as Q̄
6 set Sh = Softmax(Q̄K�/

√
d) · V // The header field.

7 set St = mean(V) // The tail field.
8 build S = {Sh, St } by the original row arrangement accordingly

return

Fig. 8. The single stack in Informer’s encoder. (1) The horizontal stack stands for an individual one of the layer stacking replicas in the encoder. (2) The 
presented one is the main stack receiving the whole input sequence. Then the second stack takes half slices of the input, and the subsequent stacks repeat. 
(3) The red layers are dot-product matrixes, and they get cascade decrease by applying self-attention distilling on each layer. (4) Concatenate all stacks’ 
feature maps as the encoder’s output.

4.1.5. Implementation
We have presented the pseudo-code in Algorithm (1). As discussed above, step 2 and step 3 keep the logarithmic com-

plexity. Moreover, we compute the measurement M through rolling all the queries, which makes a linear complexity. The 
following steps could be highly efficient vector operations and maintain logarithmic total memory usage. In practice, the 
input length is typically equivalent during queries and keys’ self-attention computation, i.e., L Q = LK = L, such that the total 
ProbSparse self-attention time complexity and space complexity are O(L ln L). For the masked multi-head self-attention in 
the decoder, we can achieve this by applying the positional mask on step 6 and using cusum(·) to replace mean(·) of step 7.

4.2. Encoder

The encoder is designed to extract the robust long-range dependency of the long sequential inputs, which allows for 
processing longer sequential inputs under the memory usage limitation. After the input representation, the t-th sequence 
input X t has been shaped into a matrix Xt

en ∈ RLx×dmodel . We clip it into different series on the time dimension and 
feed them into multiple layer stacking with self-attention distilling. Then we concatenate the final feature map from each 
truncated stacks as the hidden representation of sequential inputs. A sketch of the encoder’s design is given in Fig. 8 for 
clarity.

4.2.1. Self-attention distilling
As the natural consequence of the ProbSparse self-attention mechanism, the encoder’s feature map has redundant com-

binations of value V. We use the distilling operation to privilege the superior ones with dominating features and make a 
focused self-attention feature map in the next layer. It trims the input’s time dimension sharply, seeing the n-heads weights 
matrix (overlapping red squares) of Attention blocks in Fig. 8. Inspired by the dilated convolution [64,65], our “distilling” 
procedure forwards from j-th layer into ( j + 1)-th layer as:

Xt
j+1 = MaxPool

(
ELU( Conv1d([Xt

j]AB) )
)

, (19)
11
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where [·]AB represents the attention block. It contains the multi-head ProbSparse self-attention and the essential operations, 
where Conv1d(·) performs an 1-D convolutional filters (kernel width=3) on time dimension with the ELU(·) activation 
function [66]. We add a max-pooling layer with stride 2 and down-sample Xt into its half slice after stacking a layer. The 
down-sampling operation reduces the whole memory usage to be O((2 − ε)L log L), where ε is a small number.

The self-attention mechanism forces the information pair-wisely exchanging with each other in inputs and generates 
a new representation with projected inputs in Eq. (10). Meanwhile, the distilling operation privileges the superior ones 
with dominating features and makes a focused self-attention feature map in the next layer. As the Sparse Transformer [15]
indicated, they had also noticed the importance of reducing redundant self-attention pairwise scores for better extraction of 
high-level concepts. Besides, our distilling operation trims the time dimension sharply, which can dramatically reduce the 
computation cost of Eq. (9) and the memory requirement of self-attention scores featuremap. It is illustrated as the n-heads 
weights matrix (overlapping red squares) of Attention blocks in Fig. 8.

4.2.2. Multiple layer stacking
To enhance the robustness of the distilling operation, we clip the input matrix Xt

en into sequential halving slices by 
the time dimension as {. . . , Xt

(i) ∈ RL(i)×dmodel , . . .} and L(i) = Lx/2(i−1), i ∈ {1, 2, 3, . . .}. For each slice, we feed it into the 
individual layer stack and progressively decrease the number of self-attention distilling layers by dropping one layer at a 
time, like multiple pyramids in Fig. 8, such that their output dimension is aligned. Thus, we concatenate all the stacks’ 
outputs and have the final hidden representation as

Xt
en_out = Concat(Xt

(0),Xt
(1), . . .) . (20)

It can be considered a way to increase the resolution of multi-scale long-range dependencies and complementary in applying 
the distilling operation. Since we utilize the distilling operation on each layer and halve the time dimension, the total 
computational cost will not exceed that of a single feeding in the vanilla Transformer.

4.3. Decoder

We use a standard decoder structure [14] in Fig. 2 and it is composed of a stack of two identical multi-head attention 
layers. The generative inference is employed to alleviate the speed plunge in long prediction. We feed the decoder with the 
following vectors

Xt
de = Concat(Xt

token,Xt
0) ∈R(Ltoken+L y)×dmodel , (21)

where Xt
token ∈ RLtoken×dmodel is the start token, Xt

0 ∈ RL y×dmodel is a placeholder for the target sequence (set scalar as 0). 
Masked multi-head attention is applied in the ProbSparse self-attention computing by setting masked dot-products to −∞. 
It prevents each position from attending to coming positions, which avoids auto-regressive. A fully connected layer acquires 
the final output, and its outsize dy depends on whether we perform univariate or multivariate forecasting.

4.3.1. Generative inference
Start token is efficiently applied in NLP’s “dynamic decoding” [41], and we extend it into a generative way. Instead of 

choosing specific flags as the token, we sample a Ltoken long sequence in the input sequence, such as an earlier slice before 
the output sequence. Take predicting 168 points as an example (7-day temperature prediction in the experiment section), 
we will take the known 5 days before the target sequence as “start-token”, and feed the generative-style inference decoder 
with Xde = {X5d, X0}. X0 contains the target sequence’s time stamp, i.e., the context at the target week. Then our proposed 
decoder predicts outputs by one forward procedure rather than the time-consuming “dynamic decoding” in the conventional 
encoder-decoder architecture. A detailed performance comparison is given in the computation efficiency section.

4.3.2. Mixed multi-head attention
We propose the mixed multi-head attention mechanism to enlarge the perception field of the multi-head attention 

for specific data distributions. The adjacent time slices in sequence contain coherent information. Therefore, we design the 
mixed multi-head attention to enable each time slice to exchange information with nearby slices, which is the natural choice 
from the convolutional filters on inputs in Eq. (2). It provides different data perspectives for the following fully connected 
layers. The most straightforward implementation is to change the Concat(·) operation at the feature map of multi-head 
self-attention:

MA(X) = Mixed-Concat(head1, . . . ,headn)

where headk = A(Q,K,V)
, (22)

where the Mixed-Concat(·) denotes exchanging the time dimensional index with the head index during the tensor concate-
nation.
12
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4.3.3. Loss function
We choose the MSE loss function on prediction Ŷt w.r.t. the target sequences Yt :

LMSE = 1

L y

L y∑
i=1

(ŷi − yi)
2 , (23)

and the loss is propagated back from the decoder’s outputs across the entire model. The prediction could also be extend to 
include the “start token” to involve more gradients updating.

4.4. Analysis

We analyze how the boundary relaxation in Eq. (13) affects the Top-u query selection in the ProbSparse Self-attention. 
The discussion begins with the final result:

Lemma 2. Assuming k j ∼ N (μ, �), then ∀Mm = max
i

M(qi, K), there exists κ > 0 such that ∀q1, q2 ∈ {q|M(q, K) ∈ (Mm −
κ, Mm]}, if M(q1, K) > M(q2, K) in the interval, we have a high probability that M(q1, K) > M(q2, K).

Proof. To make the further discussion simplify, we let the pairwise attention score ai, j = qik�
j /

√
d for i = 1, · · · , L Q and 

j = 1, · · · , LK , then we have the i-th query array Ai = [ai,1, · · · , ai,Lk ] running through all keys. Defining the last term of M

as mean
j

(Ai) = 1
LK

∑LK
j=1(qik�

j /
√

d), we can immediately rewrite it into M (qi,K) = max
j

(Ai) − mean
j

(Ai). As for M (qi,K), 

we rewrite pairwise attention score as ai, j = mean
j

(Ai) + 
ai, j , where 
∑Lk

j=1 
ai, j = 0. Then we can derive from Eq. (6):

M (qi,K) = ln
LK∑
j=1

eqi k�
j /

√
d − 1

LK

LK∑
j=1

(qik
�
j /

√
d)

= ln(

Lk∑
j=1

e
mean

j
(Ai)

e
ai, j ) − mean
j

(Ai)

= ln(

Lk∑
j=1

e
ai, j )

. (24)

In the following description, we omit the j in max(·) and mean(·) for simplicity. Recalling that kj ∼ N (μ, �) follows 
multivariate Gaussian distribution, which means that k1, · · · , kn are i.i.d. Gaussian distributions. So Ai are i.i.d. variables 
and we have Ai ∼N (mean(Ai), σ 2

i ) for i ∈ {1, · · · , L Q }.
Next, we define the bias term as Ai = [
ai,1, · · · , 
ai,Lk ]. If we consider that Lk → ∞ under the Wiener-Khinchin law of 

large numbers, we have Ai ∼N (0, σ 2
i ) for i ∈ {1, · · · , L Q } based upon the constraint 

∑Lk
j=1 
ai, j = 0. We define the sum of 

Log-normal as SLN(Ai) = �
Lk
j=1 exp(
ai, j), and we select following two sets:

A1 = {max(A1),max(A2), · · · ,max(An)}
A2 = {SLN(A1),SLN(A2), · · · ,SLN(An)}

.

Then we build the top-u subset of A1 and A2 as A1
top−u and A2

top−u by a descending order. The A1 represents the M

measurement while the A2 is associated with M . Before we further explore the distribution of M (qi,K), we reformulate 
the Lemma 2 into its equivalent form:

Proposition 1. For the set A = {A1, · · · , AL Q }, we assume that {σ 2
1 , σ 2

2 , · · · , σ 2
L Q

} follows a truncated Gaussian distribution with a 
value μ(σ 2) = mean(σ 2

1 , · · · , σ 2
L Q

). If max(Ai) ∈ A1
top−u , then SLN(Ai) ∈ A2

top−u holds in the probability:

p ≥ �(

√
μ(σ 2) + ln(2)

exp(0.5)
)(1 − (�(1))LK )L Q − ε ,

where �(x) is the standard normal distribution function and ε is small. In the empirical evaluation, we choose L Q , LK ∈ [500, 1000]
and u < � L Q

2 �. Then, we have a probability over 99% that the conclusion stands when μ(σ 2) ≥ 9, exp(μ(σ 2)) � LK .

We divide the proof into four parts, and the proof sketch is given as:
13



H. Zhou, J. Li, S. Zhang et al. Artificial Intelligence 318 (2023) 103886
• Firstly, we introduce the preliminary in approximating the sum and the difference of Log-normal distributions, which is 
based on the shifted normal process transferred through a shifted Log-normal process. (Section 4.4.1)

• Secondly, we prove the probability Pr(SLN(A1) − SLN(A2) ≥ 0) depends on the μ(σ 2) and the initial values S10, S20. 
(Section 4.4.2)

• Then, we extend the conclusion to the top-u case, which reveals that Lemma 2 and Proposition 1 are equivalent. (Sec-
tion 4.4.3)

• And we give a numerical simulation for empirical evaluation. (Section 4.4.4)
Combining above results, we have the final conclusion. �
4.4.1. Part 1: reformulation to the difference of two Log-normal distributions

We compare two individual sums, namely S1 = SLN(A1) and S2 = SLN(A2), with the condition that max(A1) > max(A2). 
Recall that M (qi,K) = ln(Si) from Eq. (24), the probability p1,2 = Pr(S1 − S2 > 0) is the major result of Proposition 1.

The Log-normal distribution sum problem equals approximating the distribution of SLN(Ai), which has been well-
introduced [67,68]. However, there could hardly be a tangible probability density function (PDF) for the sum/difference 
of two Log-normal distributions or more. In most cases [69,70], if X1, · · · , Xn are i.i.d. log-normal distributed variables, then 
the sum Y = �n

j=1 X j can be reasonably approximated by a distribution in the right tail [71]. From the prevailing right-tail 
estimators, Fenton–Wilkinson method [72,73] builds another log-normal distribution at the right tail based on matching the 
mean and variance, which has been applied in finance [74], telecommunication [75] and insurance [76].

Using the Fenton–Wilkinson method, S1, S2 can be approximated with two log-normal distributions respectively, denoted 
as Z1, Z2. Accordingly, the variances of the log-normal distributions Z1 ∼ Lognormal(μZ1 , σ 2

Z1
), Z2 ∼ Lognormal(μZ2 , σ 2

Z2
)

can be reasonably calculated [73] as:

σ 2
Z1

= ln

[(
eσ 2

1 − 1
) ∑

e2μ(∑
eμ

)2
+ 1

]
≈ σ 2

1 − ln(LK ) ,

σ 2
Z2

= ln

[(
eσ 2

2 − 1
) ∑

e2μ(∑
eμ

)2
+ 1

]
≈ σ 2

2 − ln(LK ) .

(25)

The approximation holds when estimating the right tail for the sum of Log-normal distributions, which also requires 
exp(σ 2

i ) � LK in the Proposition 1, namely σ 2
i > ln(LK ) for all elements Ai ∈ A1

top−u .
Then we utilize the Z = Z1 − Z2 to measure the difference of two Log-normal distributions S1 and S2. Note that the 

error bound between the measurement is small [69,71] but has no close-form. Based on the theorem [77], S1 and S2 are 
two log-normal stochastic variables depending on the stochastic differential equations dSi

Si
= σ ′

i dW i , i = 1, 2. dW1,2 presents 
a standard Weiner process associated with S1,2 respectively, and σ ′ 2

i = σ 2
Zi

= σ 2
i − ln(LK ) = Var (ln Si), S± ≡ S1 ± S2, S±

0 ≡
S10 ± S20. As for the joint probability distribution function P (S1, S2, t; S10, S20, t0), the values of S1 and S2 at time t > t0
are acquired by initial value S10 and S20 at initial time t0. We follow the same assumption [77] and set S10 = exp(max(A1)), 
S20 = exp(max(A2)) as the initial values for S1, S2 at time t0.

Next, by adopting Lie-Trotter splitting method [78,77], we can deduce that S− = S1 − S2 is shifted log-normal distributed 
f LN(x), which is guided by Eq. (2.11) in [77]. The scaling coefficient S̃−

0 is:

S̃−
0 = (S10 − S20) +

(
σ 2

1 + σ 2
2 − 2 ln(LK )

σ 2
1 − σ 2

2

)
(S10 + S20)

σ̃ 2− = (σ 2
1 − σ 2

2 )2

4(σ 2
1 + σ 2

2 − 2 ln(LK ))

. (26)

Actually, a shifted log-normal distribution can be transformed into a shifted normal distribution. To simplify the calculation 
of probability p from f LN(x), we have a shifted normal distribution f N (x) with the scaling coefficient ln( S̃−

0 ):

σ 2
X = eσ̃ 2− − 1, μX = 1.

Note that above the derivation requires the constraint ε = σ̃ 2−(t − t0) ≤ 1 holds.

4.4.2. Part 2: approximation of the probability
The variance of the shifted normal distribution f N(x) is σ 2

X . Compared to the standard normal distribution PDF curve, 

the shifted normal distribution PDF curve f N (x) actually moves to the right at the length L = ln(S̃−
0 )

σX
, where we have 

S̃− ≥ S10 − S20 ≥ 0. Then we will show that L decides the probability Pr(S1 − S2 > 0).
0
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Corollary 2. Pr(
L Q⋂
i=1

max(Ai) ≥ σi) → 1 when L Q ≤ 1000. Specifically, the condition SLN(Ai) > exp(max(Ai)) ≥ exp(σi) holds at 

the probability P1 = (1 − (�(1))LK )L Q .

Proof. Considering Ai ∼N (0, σ 2
i ) and i ∈ [1, · · · , L Q ], if all elements in Ai are less than σi , namely max(Ai) < σi , then the 

probability of event Pr(max(Ai) < σi) is (�(1))LK , where �(x) is the standard normal distribution function. For the inverse 
event of max(Ai) < σi , we have:

Pr(max(Ai) ≥ σi) = 1 − (�(1))LK ,

where �(1) ≈ 0.86 and LK ≥ 500. Furthermore, if for all Ai ∈ A, max(Ai) is greater than or equal to σi respectively, which 

is equal to the event 
L Q⋂
i=1

max(Ai) ≥ σi , the probability depends on L Q -times events:

Pr(

L Q⋂
i=1

max(Ai) ≥ σi) = (1 − (�(1))LK )L Q ,

where LK ≥ 500, L Q ≤ 1000 and A1, · · · , AL Q are i.i.d. variables. Through a simple numerical estimation, we have a high 
probability that max(Ai) ≥ σi , namely SLN(Ai) ≥ exp(σi) holds for ∀i ∈ [1, · · · , L Q ], where the error is less than 10−5. �
Corollary 3. If max(Ai) ∈ A1

top−u , then we have max(Ai)
2 ≥ μ(σ 2).

Proof. We define two subsets of A1 as B1 = {max(A j)| max(A j)
2 ≥ μ(σ 2)}, B2 = {max(A j)|σ 2

j ≥ μ(σ 2)}. By using Corol-

lary 2 and ∀A j ∈ B2, we have max(A j)
2 ≥ σ 2

j ≥ μ(σ 2), then A j ∈ B1, which leads to B2 ⊂ B1. Recall the assumption of 

truncated Gaussian distribution on σ 2
i , we have |B1| ≥ |B2| = � L Q

2 � > |A1
top−u |. Then we use the approach of contradiction 

proof. If ∃i ∈ [1, · · · , n], the condition max(Ai) ∈ A1
top−u holds. However max(Ai)

2 < μ(σ 2), which means max(Ai) /∈ B1. 
Then ∀ j that max(A j) ∈ B1, we have max(A j)

2 ≥ μ(σ 2) > max(Ai)
2. It leads to the conclusion max(A j) ∈ A1

top−u , because 
A1

top−u is the subset containing Top-u elements of A1. Thus we have B1 ⊂ A1
top−u , however |A1

top−u | = u < � L Q
2 � ≤ |B1|, 

which is contradiction. So we have A1
top−u ⊂ B1, and the above corollary holds. �

Corollary 4. S̃−
0 ≥ 2 exp(

√
μ(σ 2)) holds at the probability P1 = (1 − (�(1))LK )L Q .

Proof. Based on the definition of S̃−
0 in Eq. (26), we have S̃−

0 ≥ S10 + S20. From Corollary 2 and Corollary 3, we derive the 
conclusion that S10 ≥ S20 ≥ exp(

√
μ(σ 2)) holds at probability P1 = (1 − (�(1))LK )L Q , so we reach the corollary’s result. �

Furthermore, we perform the probability estimation. From the constraint of Lie-Trotter method [78,77], we have σ̃ 2−(t −
t0) ≤ 1. We follow the setting t − t0 = 1 [77] and it obtains σ̃ 2− ≤ 1. Combining the two inequality, we have the length L as:

�(
ln( S̃−

0 )

σX
) = �(

ln( S̃−
0 )√

exp(σ̃ 2− − 1)

) ≥ �(
ln( S̃−

0 )

exp(0.5)
) ≥ �(

√
μ(σ 2) + ln(2)

exp(0.5)
) .

Considering the probability P1 in Corollary 4, the main result is:

p = Pr(S1 − S2 > 0) ≥ �(
μ(σ ) + ln(2)

exp(0.5)
)(1 − (�(1))LK )L Q . (27)

We give a numerical simulation in Section 4.4.4, where the settings are LK = 1000, n = 500 and μ(σ ) = 5, then Pr(S1 − S2 >

0) ≥ 99%. From the theoretical perspective, we can easily find the probability highly relies on the initial values {S10, S20}, 
the difference S10 − S20 and the mean value of variances μ(σ 2). Firstly, we know that approximating S̃−

0 by S10 − S20 is 
suitable in most conditions [77]. So if S10 − S20 is small, namely the distributions of {A1, A2} are equal to some extent, 
the term �(

ln(S̃−
0 )√

exp(σ̃ 2−−1)
) will be small enough (below 50%) to break the conclusion, which fits our numerical simulation. 

Secondly, from Corollary 3, the probability Pr(S1 − S2 > 0) is related to μ(σ 2), which builds an adequate lower bound for 
S̃− .
0
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4.4.3. Part 3: extension to the whole set and the corresponding interval
We will deduce the above derivation into the general case in Proposition 1. For the whole set A, we select two subsets 

Amax
top−u, ASLN

top−u ⊆ A, and they satisfy:

Amax
top−u = {Ai|max(Ai) ∈ A1

top−u}, ASLN
top−u = {Ai|SLN(Ai) ∈ A2

top−u}.
In other words, Amax

top−u, ASLN
top−u are partial elements in A constructing A1

top−u, A2
top−u respectively. Since we select the top-

u elements, |A1
top−u | = |A2

top−u | = |Amax
top−u | = |ASLN

top−u | = u. The previous Top-u conclusion is equal to prove that |Amax
top−u ∩

ASLN
top−u | = u holds at a high probability.

Rolling back to our problem, if the condition Amax
top−u �= ASLN

top−u , which indicates

U = Amax
top−u ∩ ASLN

top−u, |U | = u′ < u.

We let M = Amax
top−u \ U , N = ASLN

top−u \ U , where |M| = |N| = u − u′ = 
u. Immediately, we can rewrite them into M =
{Am1 , · · · , Am
u }, N = {An1 , · · · , An
u }. So ∀i, j ∈ [1, · · · , 
u], we have:

max(Ami ) > max(An j ), SLN(Ami ) < SLN(An j ), (28)

which is the intersection of (
u)2-times events. Moreover, the probability p
u = Pr(|M| = |N| = 
u) has a close-form 
formulation as:

p
u = Pr(

u⋂

i, j=1

[max(Ami ) > max(An j ),SLN(Ami ) < SLN(An j )])

= (1 − p)(
u)2

. (29)

For the event that Amax
top−u and ASLN

top−u are totally overlapped, namely the total number of element reaches |U | = u, we have 
the following probability:

Pr(|U | = u) =1 −
u∑


u=1

p
u

=1 − [(1 − p) + (1 − p)22 + · · · + (1 − p)u2 ]
=p − ε

, (30)

where ε = ∑u
i=2(1 − p)i2

< (1 − p)4 + (1 − p)5 + · · · = (1−p)4

p . Then, the Proposition 1 matches the top-u isotonicity conclu-

sion, where the element selection in building A1
top−u and A2

top−u from A is totally overlapped at a high probability p − ε . 
Note that if p > 99%, as in the case study, we have ε < 10−4.

From Lemma 1, we have M(qi, K) ≥ ln LK . Within M(qi, K) ∈ [ln LK , Mm] and ∀u < � L Q
2 �, there exists κ < (0, Mm − ln LK ]

that satisfies |{qi|M(qi, K) ∈ (Mm − κ, Mm]}| = u by sorting the elements of set [M(qi, K)|i ∈ [1, L Q ]] in a descending order. 
Then we can easily choose the u − th element M(qu, K) within κ = Mm − M(qu, K). Finally, the Proposition 1 holds at 
probability p − ε .

4.4.4. Part 4: the numerical simulation
We perform an illustrative numerical simulation [77] of the probability approximation in Fig. 9. We draw the curve of 

the shifted Log-normal distribution f LN(x) under different {S10, S20, σ 2
1 , σ 2

2 } settings. By adding the value of S10 − S20 from 
50 to 100, the bell-shaped curve shifted to the right direction. Meanwhile, the probability density Pr(S1 − S2 > 0) gets 
closer to 1, which is the area under the curve in the first quadrant. This phenomenon also applies to adding the μ(σ 2). 
Generally speaking, if the set A has larger maximum elements or larger variance, we will have a higher probability that 
Lemma 2 holds.

4.4.5. Part 5: connections to M̂
We will illustrate that M(qi, K) can be a rough KL divergence estimator, and is proportion to kNN estimator Eq. (8) in 

the long-tail distribution scenario with the random sampling strategy. We divide the sample points Ŷ in a dense subset 
S1 and a sparse subset S2. Suppose p obeys a long-tail distribution, which means S2 contains most of the sample points 
and is distributed uniformly close to the tail part. In that case, we can estimate K̂ L(q||p) by calculating the length of S2, 
which is equivalent to the length of the tail for a long-tail distribution. Naturally, it could be approximated by M(Y) =
max(Y) − mean(Y). Intuitively, the discussion holds in the assumption that the dense subset S1 contains few sample points, 
the sparse subset S2 contains most of the sample points, and the sample points in S2 uniformly distribute when they 
are close to the tail. Then, we can estimate the KL divergence by the tail length. Thus, Max-mean measurement can be 
conducted on the Random/Max sampling strategy in the long-tail distribution.
16
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Fig. 9. The results of numerical simulation. We approximate the p = Pr(M(q1, k) > M(q2, k)), {S10, S20} represent the initial values of the Weiner process 
mentioned in Section 4.4.1, and σ1, σ2 denote the variance for A1, A2 respectively. Under the top-u scenario, the three solid/dash lines with same color 
show that μ(σ 2) has a positive relation with p. And the solid/dash lines in different colors show that with the same variance σ1, σ2, the difference of 
initial value S10 − S20 also has a positive correlation with p.

4.5. Limitations and following-up works

The proposed Informer improves the model capacity dramatically by an efficient ProbSparse self-attention mechanism. 
On the other side, it inevitably makes the proposed Informer easily over-fitting to the short sequence data. Recently, there 
has been rapid progress in applying Transformer models in the time-series. The FEDformer [79] leverages frequency tricks 
to reduce the quadratic attention computation and acquire a linear one. The autoformer [80] adds an auto-correlations 
mechanism to the self-attention for better time-series modeling. A complete survey could be found [81]. Almost all the 
works follow the Informer’s generative style decoder, and they can generate the outputs from one-step forwarding. And the 
manipulations on the attention feature map could be coupled with the ProbSparse attention for its query-wise reduction of 
computing complexity, which also helps alleviate the over-fitting problem.

5. Experiment

In this section, we conduct extensive experiments and compare the performances of ten methods (including two our 
methods) on ten datasets.

5.1. Datasets

We extensively perform experiments on ten datasets, including four collected real-world datasets for LSTF and six public 
benchmark datasets.

ETT (Electricity Transformer Temperature)1: The ETT is a crucial indicator in the electric power long-term deployment, 
which is affected by massive periodical factors, and the target of forecasting several days ahead makes the problem in-
tractable. We collected 2-year data from four separated counties in China. To explore the granularity on the LSTF problem, 
we create separate datasets as {ETTh1, ETTh2, ETTh3, ETTh4} for 1-hour-level and {ETTm1, ETTm3, ETTm4} for 15-minute-
level. Each data point consists of 7 features, including the predictive value “oil temperature”, and 6 different types of power 
load features. The train/val/test is 12/4/4 months.

ECL (Electricity Consuming Load)2: It collects the electricity consumption (Kwh) of 321 clients. Due to the missing data 
[16], we convert the dataset into hourly consumption of 2 years and set ‘MT_320’ as the target value. The train/val/test is 
15/3/4 months.

Weather3: This dataset contains local climatological data for nearly 1,600 U.S. locations, 4 years from 2010 to 2013, 
where data points are collected every 1 hour. Each data point consists of 12 features, including the predictive feature “wet 
bulb” and 11 different climate/weather features. The train/val/test is 28/10/10 months.

PM2.54: Beijing Multi-Site Air-Quality Data Data Set contains hourly air pollutants data of 12 nationally-controlled air-
quality monitoring sites from the Beijing Municipal Environmental Monitoring Center. The period is from March 1st, 2013 to 
February 28th, 2017, and data points are collected every 1 hour. The meteorological data in each air-quality site are matched 
with the nearest weather station from the China Meteorological Administration. We select the data of the Nongzhanguan 
monitoring site as the PM2.5 dataset. The train/val/test is 255/37/73 days in a chronological order.

Solar5: The solar dataset contains the solar power production records sampled every 10 minutes from 137 PV plants in 
Alabama State in 2006. The train/val/test is 255/37/73 days in a chronological order.

1 We collected the ETT dataset and published it at https://github .com /zhouhaoyi /ETDataset.
2 ECL dataset was acquired at https://archive .ics .uci .edu /ml /datasets /ElectricityLoadDiagrams20112014.
3 Weather dataset was acquired at https://www.ncei .noaa .gov /data /local -climatological -data/.
4 PM2.5 dataset was acquired at https://archive .ics .uci .edu /ml /datasets /Beijing +Multi -Site +Air-Quality +Data.
5 Solar dataset was acquired at: http://www.nrel .gov /grid /solar-power-data .html.
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Table 1
The Informer network components in details.

Encoder: N

Inputs 1x3 Conv1d Embedding (d = 512) 3
ProbSparse
Self-attention
Block

Multi-head ProbSparse Attention (h = 16, d = 32)
Add, LayerNorm, Dropout (p = 0.1)
Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Distilling 1x3 conv1d, ELU
Max pooling (stride = 2)

Decoder: N

Inputs 1x3 Conv1d Embedding (d = 512) 2
Masked PSB add Mask on Attention Block
Self-attention
Block

Multi-head Attention (h = 8, d = 64)
Add, LayerNorm, Dropout (p = 0.1)
Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Final:

Outputs FCN (d = dout)

Traffic6: The traffic dataset contains 15 months of daily data from the California Department of Transportation. It de-
scribes the occupancy rate (0 1) of different car lanes of San Francisco bay area freeways. The data points are collected 
every 10 minutes, and the columns were aggregated to obtain hourly traffic data. It contains 963 sequences, and the length 
is 10,560.

Exchange-Rate7: The exchange rate dataset is a collection of the daily exchange rates of eight countries: Australia, British, 
Canada, Switzerland, China, Japan, New Zealand, and Singapore. The data is collected from 1990 to 2016.

5.2. Experimental details

We briefly summarize the basics, network components and setups in this section.

5.2.1. Baselines
We have selected five time-series forecasting methods as comparison, including ARIMA [82], Prophet [54], LSTMa [38]

and LSTnet [4] and DeepAR [28]. To better explore the ProbSparse self-attention’s performance in our proposed Informer, we 
incorporate the canonical self-attention variant (Informer†), the efficient variant Reformer [19] and the most related work 
LogSparse self-attention [16] in the experiments. The details of network components are given in Table 1.

5.2.2. Hyper-parameter tuning
We conduct grid search over the hyper-parameters. For Informer, the layer of encoder is chosen from {6, 4, 3, 2} and 

the layer of decoder is set as 2. The head number of multi-head attention is chosen from {8, 16}, and the dimension of 
multi-head attention’s output is set as 512. Informer contains a 3-layer stack and a 2-layer stack (1/4 input) in the encoder, 
and a 2-layer decoder. The decoder’s start token is a segment truncated from the encoder’s input sequence, so the length 
of decoder’s start token must be less than the length of encoder’s input. Our proposed methods are optimized with Adam 
optimizer and its learning rate starts from 1e−4, decaying 10 times smaller every 2 epochs and the total epochs is 5. We 
set the comparison methods as recommended and the batch size is 32. Setup: The input of each dataset is zero-mean 
normalized. Under the LSTF settings, we prolong the prediction windows size L y progressively, i.e., {1d, 2d, 7d, 14d, 30d, 
40d} in {ETTh, ECL, Weather}, {6h, 12h, 24h, 72h, 168h} in ETTm. The Prophet use the series-to-point prediction setting. 
The RNN-based methods perform a dynamic decoding with left shifting on the prediction windows. Our proposed Informer 
and Informer† performs generative decoding. Metrics: We use two evaluation metrics, including MSE = 1

n

∑n
i=1(y − ŷ)2

and MAE = 1
n

∑n
i=1 |y − ŷ| on each prediction window (averaging for multivariate prediction), and roll the whole set with 

stride = 1. Platform: All the models were trained/tested on a single Nvidia V100 32GB GPU. The source code is available at 
https://github .com /zhouhaoyi /Informer2020.

5.3. Results and analysis

Table 2 and Table 3 summarize the univariate/multivariate evaluation results of all the methods on eight datasets. We 
gradually prolong the prediction horizon as a higher requirement of prediction capacity, where the LSTF problem setting is 
precisely controlled to be tractable on one single GPU for each method. The best results are highlighted in boldface.

6 Traffic dataset was acquired at: https://archive .ics .uci .edu /ml /datasets /PEMS -SF.
7 Exchange-Rate dataset was acquired at: https://github .com /laiguokun /LSTNet.
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Table 2
Univariate long sequence time-series forecasting results on ten datasets.

Methods Informer Informer† LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.072 0.206 0.058 0.186 0.083 0.229 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.230 0.115 0.275
48 0.122 0.273 0.141 0.302 0.131 0.293 0.284 0.445 0.193 0.358 0.142 0.327 0.155 0.274 0.168 0.330
168 0.172 0.330 0.207 0.375 0.187 0.355 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763
336 0.242 0.417 0.225 0.398 0.230 0.428 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820
720 0.269 0.435 0.257 0.421 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

ET
Th

2

24 0.093 0.240 0.099 0.241 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381
48 0.115 0.270 0.129 0.277 0.129 0.298 0.458 0.545 0.190 0.348 0.141 0.321 3.190 0.474 0.304 0.462
168 0.169 0.334 0.180 0.350 0.206 0.392 1.029 0.879 0.385 0.514 0.205 0.394 2.800 0.595 2.145 1.068
336 0.205 0.375 0.198 0.377 0.217 0.397 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543
720 0.232 0.395 0.245 0.402 0.263 0.413 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664

ET
Th

3

24 0.084 0.211 0.091 0.214 0.098 0.229 0.381 0.267 0.330 0.194 0.475 0.378 0.211 0.282 0.354 0.199
48 0.138 0.285 0.139 0.291 0.180 0.286 0.627 0.774 0.467 0.379 0.434 0.335 0.294 0.355 0.462 0.351
168 0.198 0.357 0.207 0.356 0.239 0.373 1.367 2.818 0.679 0.699 0.745 0.822 0.486 0.465 1.153 2.510
336 0.258 0.410 0.272 0.433 0.260 0.457 1.757 4.723 0.552 0.612 0.741 0.925 0.604 0.540 2.819 18.71
720 0.230 0.390 0.236 0.428 0.235 0.400 2.993 6.832 1.075 1.414 1.226 1.901 0.802 0.912 5.138 59.55

ET
Th

4

24 0.257 0.392 0.257 0.398 0.269 0.397 0.433 0.426 0.443 0.376 0.377 0.267 0.376 0.466 0.351 0.227
48 0.396 0.509 0.401 0.514 0.433 0.547 0.534 0.632 0.621 0.639 0.608 0.578 0.423 0.573 0.404 0.283
168 0.427 0.558 0.425 0.553 0.470 0.599 0.987 1.537 0.749 0.912 0.949 1.307 0.526 0.620 0.715 1.004
336 0.489 0.604 0.494 0.590 0.494 0.646 1.550 3.164 1.035 1.391 0.857 1.125 0.599 0.677 1.594 6.503
720 0.567 0.655 0.555 0.665 0.592 0.700 1.925 3.661 0.945 1.374 0.834 1.170 0.684 0.749 4.351 59.26

W
ea

th
er

24 0.117 0.251 0.119 0.256 0.136 0.279 0.231 0.401 0.131 0.254 0.128 0.274 0.219 0.355 0.302 0.433
48 0.178 0.318 0.185 0.316 0.206 0.356 0.328 0.423 0.190 0.334 0.203 0.353 0.273 0.409 0.445 0.536
168 0.246 0.388 0.259 0.404 0.309 0.439 0.654 0.634 0.341 0.448 0.293 0.451 0.503 0.599 2.441 1.142
336 0.297 0.416 0.310 0.422 0.359 0.484 1.792 1.093 0.456 0.554 0.585 0.644 0.728 0.730 1.987 2.468
720 0.359 0.466 0.361 0.471 0.388 0.499 2.087 1.534 0.866 0.809 0.499 0.596 1.062 0.943 3.859 1.144

EC
L

48 0.351 0.457 0.318 0.438 0.380 0.489 0.971 0.884 0.493 0.539 0.204 0.357 0.879 0.764 0.524 0.595
168 0.422 0.496 0.430 0.514 0.424 0.519 1.671 1.587 0.723 0.655 0.315 0.436 1.032 0.833 2.725 1.273
336 0.479 0.528 0.501 0.552 0.514 0.563 3.528 2.196 1.212 0.898 0.414 0.519 1.136 0.876 2.246 3.077
720 0.500 0.547 0.520 0.571 0.558 0.609 4.891 4.047 1.511 0.966 0.513 0.565 1.251 0.933 4.243 1.415
960 0.532 0.608 0.584 0.638 0.624 0.645 7.019 5.105 1.545 1.006 0.657 0.683 1.370 0.982 6.901 4.264

PM
25

24 0.667 0.525 0.691 0.572 0.730 0.592 0.543 0.785 0.675 0.862 0.632 0.910 0.679 0.735 0.868 1.408
48 0.906 0.637 0.964 0.663 0.918 0.700 0.716 1.305 0.923 1.157 0.887 1.221 1.091 0.974 1.038 1.996
168 1.209 0.781 1.259 0.830 1.248 0.823 1.469 4.508 1.011 1.839 1.258 1.448 1.707 1.325 2.179 3.206
336 1.215 0.776 1.272 0.787 1.273 0.788 1.873 5.002 1.908 1.853 1.521 1.553 1.714 1.229 4.311 4.226
720 1.262 0.802 1.287 0.875 1.285 0.862 2.322 6.558 1.926 1.937 1.941 1.683 1.693 1.139 7.960 7.290

So
la

r

36 0.208 0.286 0.194 0.297 0.209 0.298 3.737 7.528 0.600 0.748 0.274 0.296 0.552 0.555 0.446 0.382
72 0.255 0.306 0.215 0.333 0.286 0.348 5.006 8.442 0.950 1.666 0.324 0.362 0.649 0.685 0.445 0.388
144 0.281 0.339 0.308 0.316 0.315 0.359 5.679 8.953 0.687 1.096 0.338 0.385 0.688 0.748 0.413 0.347
288 0.297 0.348 0.321 0.378 0.317 0.379 5.725 9.052 0.854 1.420 0.371 0.448 0.737 0.828 0.441 0.387
720 0.332 0.359 0.357 0.414 0.395 0.392 6.876 9.691 0.853 1.595 0.385 0.431 0.992 0.875 0.499 0.402

Tr
affi

c

24 0.167 0.256 0.174 0.275 0.171 0.281 2.216 1.784 0.397 0.441 0.239 0.304 0.280 0.366 0.182 0.318
48 0.181 0.275 0.182 0.288 0.186 0.292 4.454 1.759 0.721 0.656 0.265 0.323 0.234 0.359 0.214 0.335
168 0.198 0.282 0.241 0.354 0.304 0.390 3.502 1.548 0.461 0.479 0.291 0.348 0.290 0.391 0.365 0.427
336 0.287 0.356 0.246 0.331 0.321 0.403 2.438 1.286 3.711 1.598 0.339 0.389 0.317 0.417 1.252 0.684
720 0.296 0.388 0.306 0.394 0.314 0.395 3.792 1.622 2.694 1.320 0.469 0.475 0.410 0.491 5.932 1.233

Ex
ch

an
ge

-R
at

e 24 0.029 0.125 0.036 0.156 0.194 0.361 0.112 0.250 0.504 0.557 2.527 1.266 0.027 0.123 0.143 0.292
48 0.041 0.147 0.067 0.202 0.218 0.386 1.007 0.995 0.928 0.771 3.071 1.445 0.042 0.151 0.152 0.312
168 0.146 0.227 0.163 0.259 0.631 0.690 12.852 3.579 0.922 0.786 4.775 1.803 0.178 0.312 0.227 0.384
336 0.368 0.302 0.377 0.309 1.351 1.081 16.162 4.015 1.845 1.176 7.391 2.388 0.397 0.491 0.301 0.428
720 0.714 0.671 0.719 0.677 2.479 1.388 11.239 3.297 1.141 0.897 11.019 3.194 0.948 0.809 0.742 0.688

Count 68 19 0 1 2 7 2 2

5.3.1. Univariate time-series forecasting
Under this setting, each method attains predictions as a single variable over time. From Table 2, we observe that: (1) The 

proposed model Informer significantly improves the inference performance (wining-counts in the last column) across all 
datasets, and their predict error rises smoothly and slowly within the growing prediction horizon, which demonstrates 
the success of Informer in expanding the prediction capacity in the LSTF problem. (2) The Informer beats its canonical 
degradation Informer† mostly in wining-counts, i.e., 52>17, which supports the query sparsity assumption in providing a 
comparable attention feature map. Our proposed method also out-performs the most related work LogTrans and Reformer. 
We note that the Reformer keeps dynamic decoding and performs poorly in LSTF, while other methods benefit from the 
generative style decoder as nonautoregressive predictors. (3) The Informer model shows significantly better results than 
recurrent neural networks LSTMa. Our method has a MSE decrease of 40.9% (at 168), 51.4% (at 336) and 58.0% (at 720). 
This reveals a shorter network path in the self-attention mechanism acquires better prediction capacity than the RNN-based 
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Table 3
Multivariate long sequence time-series forecasting results on ten datasets.

Methods Informer Informer† LogTrans Reformer LSTMa LSTnet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.577 0.629 0.620 0.647 0.736 0.696 0.991 0.754 0.650 0.624 1.293 0.901
48 0.645 0.665 0.682 0.671 0.766 0.727 1.313 0.906 0.702 0.675 1.456 0.960
168 0.980 0.812 0.997 0.827 1.002 0.896 1.824 1.138 1.212 0.867 1.997 1.214
336 1.028 0.891 0.994 0.863 1.082 0.932 2.117 1.280 1.324 0.974 2.655 1.369
720 1.135 0.936 1.141 0.937 1.297 1.091 2.415 1.520 1.960 1.322 2.143 1.380

ET
Th

2

24 0.520 0.623 0.753 0.727 0.828 0.750 1.531 1.613 1.143 0.813 2.742 1.457
48 0.998 0.831 1.051 0.877 1.806 1.034 1.871 1.735 1.449 0.921 3.567 1.687
168 1.604 1.122 1.965 1.212 4.070 1.681 4.660 1.846 4.117 1.674 1.542 2.513
336 1.823 1.177 1.520 1.085 3.875 1.763 4.028 1.688 3.434 1.549 1.544 2.591
720 2.484 1.371 2.647 1.405 3.013 1.552 5.381 2.015 3.963 1.788 2.625 3.709

ET
Th

3

24 0.172 0.289 0.173 0.313 0.203 0.290 0.645 0.754 0.592 0.737 0.775 1.165
48 0.347 0.417 0.372 0.453 0.373 0.441 0.780 1.055 0.741 1.124 0.845 1.396
168 1.022 0.739 1.048 0.779 1.083 0.762 1.362 2.854 1.149 1.956 0.946 1.501
336 1.232 0.811 1.269 0.827 1.295 0.865 1.380 3.160 1.355 2.489 1.280 1.898
720 1.387 0.854 1.417 0.864 1.430 0.905 1.592 3.743 1.688 3.676 1.446 1.874

ET
Th

4

24 0.368 0.476 0.364 0.469 0.378 0.498 0.531 0.490 0.703 0.798 1.294 2.941
48 0.632 0.627 0.627 0.624 0.695 0.647 0.782 1.018 0.869 1.163 1.359 3.121
168 0.733 0.704 0.739 0.743 0.801 0.732 1.235 2.230 0.994 1.499 1.437 3.395
336 1.372 0.940 1.414 0.967 1.390 0.948 1.672 4.256 1.606 4.325 1.507 3.764
720 1.612 1.021 1.644 1.051 1.623 1.090 2.031 5.242 1.822 5.131 1.765 4.553

W
ea

th
er

24 0.385 0.441 0.399 0.447 0.435 0.477 0.655 0.583 0.546 0.570 0.615 0.545
48 0.520 0.489 0.493 0.488 0.526 0.525 0.729 0.666 0.829 0.677 0.660 0.589
168 0.672 0.595 0.683 0.632 0.727 0.671 1.318 0.855 1.038 0.835 0.748 0.647
336 0.702 0.620 0.707 0.634 0.754 0.670 1.930 1.167 1.657 1.059 0.782 0.683
720 0.831 0.731 0.834 0.741 0.885 0.773 2.726 1.575 1.536 1.109 0.851 0.757

EC
L

48 0.325 0.393 0.309 0.411 0.335 0.418 1.404 0.999 0.486 0.572 0.319 0.405
168 0.340 0.434 0.323 0.420 0.348 0.456 1.515 1.069 0.574 0.602 0.374 0.426
336 0.359 0.441 0.371 0.449 0.353 0.449 1.601 1.104 0.886 0.795 0.399 0.457
720 0.406 0.483 0.390 0.460 0.405 0.489 2.009 1.170 1.676 1.095 0.536 0.535
960 0.460 0.548 0.492 0.550 0.477 0.589 2.141 1.387 1.591 1.128 0.605 0.599

PM
25

24 0.636 0.403 0.663 0.432 0.713 0.446 0.490 1.012 0.699 1.293 0.681 0.909
48 0.788 0.475 0.789 0.476 0.844 0.515 0.650 1.485 0.902 1.847 0.794 0.947
168 0.913 0.555 0.913 0.610 0.968 0.572 2.444 3.543 0.963 2.007 0.997 0.950
336 0.936 0.565 0.934 0.557 1.021 0.619 2.647 4.460 1.032 2.028 1.192 0.935
720 0.941 0.569 0.959 0.593 1.010 0.585 2.892 5.007 1.768 4.318 1.311 0.979

So
la

r

36 0.167 0.241 0.188 0.275 0.234 0.272 1.716 5.019 0.425 0.608 0.824 0.806
72 0.212 0.257 0.208 0.262 0.273 0.290 1.962 5.876 0.643 1.207 0.814 0.764
144 0.221 0.268 0.253 0.297 0.259 0.295 2.112 6.765 0.752 1.376 0.792 0.733
288 0.229 0.277 0.293 0.324 0.240 0.356 2.361 6.883 1.053 2.128 0.819 0.792
720 0.248 0.275 0.270 0.281 0.333 0.322 2.768 7.202 1.306 2.425 0.811 0.771

Tr
affi

c

24 0.344 0.326 0.322 0.320 0.386 0.328 1.640 0.961 0.828 0.438 0.717 0.590
48 0.395 0.350 0.339 0.325 0.381 0.324 1.305 0.830 1.001 0.520 0.739 0.604
168 0.380 0.348 0.365 0.331 0.418 0.347 2.642 1.323 1.678 0.810 0.724 0.592
336 0.443 0.399 0.447 0.352 0.428 0.347 1.884 1.027 2.400 1.074 0.730 0.595
720 0.454 0.406 0.485 0.368 0.450 0.361 1.960 1.042 1.997 0.926 0.805 0.640

Ex
ch

an
ge

-R
at

e 24 0.221 0.346 0.260 0.389 0.190 0.345 1.001 0.890 1.806 1.082 8.617 2.205
48 0.219 0.320 0.312 0.405 0.280 0.428 2.046 1.220 2.244 1.197 8.579 2.182
168 0.766 0.977 0.727 0.984 0.820 0.753 2.264 1.300 2.371 1.260 8.903 2.253
336 0.889 1.015 0.853 1.011 1.076 0.879 3.104 1.516 2.508 1.297 9.883 2.425
720 0.903 0.837 1.011 0.953 1.166 0.894 3.739 1.721 7.325 2.280 9.495 2.429

Count 64 25 9 0 0 2

models. (4) The proposed method outperforms DeepAR, ARIMA and Prophet on MSE by decreasing 35.5% (at 168), 39.3% (at 
336), and 40.9% (at 720) in average. The statistical models are designed for capturing long-range trending in time-series, 
and they show better performance than RNN-based models on longer sequences. Combined with the previous finding 3, it 
demonstrates that the key factor affecting the prediction capacity in LSTF is the ability of capturing long-range dependency, 
which is the starting point in designing our model Informer. On the ECL dataset, DeepAR performs better on shorter horizons 
(≤ 336), and our method surpasses on longer horizons. We attribute this to a specific example, in which the effectiveness 
of prediction capacity is reflected with the problem scalability.

5.3.2. Multivariate time-series forecasting
We change the univariate setting to a multivariate one, and some univariate methods are inappropriate. Instead, we 

add the LSTnet as the state-of-art baseline. On the contrary, our proposed Informer is easy to change from univariate 
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Table 4
Univariate long sequence time-series forecasting results on three datasets (fine-grained).

Methods Informer Informer† LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

24 0.065 0.187 0.074 0.190 0.075 0.232 0.095 0.228 0.121 0.233 0.091 0.243 0.090 0.206 0.120 0.290
48 0.106 0.249 0.103 0.240 0.178 0.360 0.249 0.390 0.305 0.411 0.219 0.362 0.179 0.306 0.133 0.305
96 0.149 0.289 0.141 0.294 0.259 0.443 0.920 0.767 0.287 0.420 0.364 0.496 0.272 0.399 0.174 0.346
288 0.211 0.372 0.214 0.369 0.400 0.572 1.108 1.245 0.524 0.584 0.948 0.795 0.462 0.558 0.452 0.534
672 0.266 0.405 0.269 0.435 0.528 0.662 1.793 1.528 1.064 0.873 2.437 1.352 0.639 0.697 2.747 1.174

ET
Tm

3

24 0.031 0.103 0.033 0.104 0.068 0.143 0.236 0.118 0.163 0.068 0.440 0.339 0.132 0.144 0.264 0.143
48 0.054 0.160 0.052 0.162 0.062 0.187 0.425 0.374 0.310 0.210 0.797 0.892 0.213 0.188 0.271 0.137
96 0.092 0.223 0.105 0.224 0.137 0.251 0.690 0.872 0.434 0.346 0.915 1.197 0.242 0.204 0.299 0.159
288 0.162 0.302 0.162 0.310 0.167 0.314 0.914 1.021 1.040 1.813 1.431 2.379 0.270 0.323 0.472 0.423
672 0.239 0.390 0.277 0.409 0.260 0.397 1.056 1.427 1.050 2.105 1.593 2.788 0.325 0.470 1.145 2.860

ET
Tm

4

24 0.161 0.247 0.160 0.245 0.187 0.291 0.289 0.205 0.254 0.288 0.430 0.357 0.164 0.279 0.343 0.260
48 0.258 0.351 0.258 0.350 0.257 0.395 0.548 0.615 0.456 0.451 0.615 0.595 0.358 0.435 0.338 0.234
96 0.302 0.403 0.319 0.411 0.303 0.408 0.922 1.778 0.791 1.080 0.750 0.803 0.483 0.550 0.359 0.248
288 0.531 0.579 0.559 0.572 0.542 0.608 1.210 1.875 1.140 1.854 0.924 1.354 0.611 0.805 0.501 0.435
672 0.635 0.704 0.643 0.728 0.655 0.734 1.315 1.994 1.297 2.787 1.081 1.635 0.691 0.822 0.980 1.914

Count 16 8 1 0 1 0 0 5

Table 5
Multivariate long sequence time-series forecasting results on three datasets (fine-grained).

Methods Informer Informer† LogTrans Reformer LSTMa LSTnet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

24 0.403 0.524 0.396 0.550 0.439 0.583 0.724 0.607 0.621 0.629 1.968 1.170
48 0.534 0.613 0.524 0.590 0.577 0.627 1.098 0.777 1.392 0.939 1.999 1.215
96 0.748 0.754 0.767 0.712 0.768 0.792 1.433 0.945 1.339 0.913 2.762 1.542
288 1.359 1.009 1.462 1.079 1.862 1.820 1.820 1.094 1.740 1.124 1.357 2.076
672 1.809 1.158 1.831 1.203 2.069 1.961 2.187 1.232 2.736 1.555 1.917 2.941

ET
Tm

3

24 0.134 0.246 0.131 0.259 0.152 0.263 0.406 0.340 0.520 0.671 0.727 1.018
48 0.158 0.264 0.183 0.274 0.172 0.295 0.572 0.615 0.793 1.400 0.801 1.159
96 0.188 0.304 0.231 0.352 0.205 0.342 0.706 0.937 1.005 1.933 0.728 1.053
288 0.578 0.533 0.575 0.528 0.581 0.556 0.912 1.105 1.281 2.954 0.839 1.292
672 0.919 0.686 0.942 0.744 0.973 0.700 1.271 1.954 1.462 3.118 1.090 1.397

ET
Tm

4

24 0.171 0.303 0.176 0.339 0.170 0.302 0.385 0.281 0.589 0.688 1.329 2.996
48 0.248 0.370 0.273 0.404 0.247 0.364 0.482 0.423 0.718 0.907 1.373 3.091
96 0.417 0.500 0.450 0.519 0.420 0.501 0.771 1.207 0.868 1.196 1.285 2.923
288 0.929 0.755 0.938 0.776 0.960 0.809 1.035 1.541 1.192 2.951 1.456 3.555
672 0.981 0.778 0.991 0.784 1.029 0.811 1.589 1.906 1.265 2.642 1.405 3.302

Count 18 7 4 0 0 1

prediction to multivariate one by adjusting the final FCN layer. From Table 3, we observe that: (1) The proposed model 
Informer greatly outperforms other methods and the findings 1 & 2 in the univariate settings still hold for the multivariate 
time-series. It demonstrates our models are not limited on specific cases. (2) The Informer model shows better results 
than RNN-based LSTMa and CNN-based LSTnet, and the MSE decreases 19.7% (at 168), 19.2% (at 336), 22.8% (at 720) in 
average. Compared with the univariate results, the overwhelming performance is reduced, and such phenomena can be 
caused by the anisotropy of feature dimensions’ prediction capacity. It reminds us of the Informer’s potential application on 
the multivariate LSTF problem.

5.3.3. LSTF with granularity consideration
We perform an additional comparison to explore the performance with various time granularities, including hour-level 

and minute-level. Recall that the coarse-grained dataset ETTh1, ETTh2, ETTh3, ETTh4 are separated for 1-hour-level and 
the fine-grained datasets ETTm1, ETTm3, ETTm4 are separated for 15-minute-level. The fine-grained univariate LSTF results 
and the multivariate LSTF results on ETTm{1,3,4} are summarized in Table 4 and Table 5, respectively. Since the ETTm2 has 
serious data imperfection, we disregard it in this experiment. The {96, 288, 672} of ETTm{1,3,4} is the aligned sequences 
with respect to {24, 48, 168} of ETTh{1,3,4}, and the former is collected at minutes-level and the latter at hour-level. For 
univariate forecasting, the proposed Informer defeats the previous strongest baseline LSTMa by decreasing the MSE 62.9% 
(at 96), 65.9% (at 288), 67.8% (at 672) in average. For multivariate forecasting, the Informer also outperforms the LSTMa 
by decreasing the MSE 59.1% (at 96), 32.9% (at 288), 31.1% (at 672) in average. Moreover, the Informer is the strongest 
Transformer-based model and achieves best performance on the longest horizon (=672) of all datasets. It demonstrates that 
Informer can be effective for predicting long sequence time-series even if the sequences are at different granularity levels.
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Table 6
Univariate long sequence time-series forecasting results on four datasets (short-term).

Methods Informer Informer+ LSTMa LSTnet Transformer TFTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1 1 0.010 0.074 0.009 0.067 0.005 0.050 0.045 0.198 0.013 0.211 0.011 0.201
6 0.059 0.201 0.020 0.109 0.015 0.086 0.053 0.234 0.025 0.118 0.023 0.109
12 0.068 0.213 0.045 0.169 0.115 0.279 0.357 1.325 0.052 0.182 0.047 0.171

ET
Th

2 1 0.007 0.062 0.004 0.048 0.003 0.037 0.041 0.412 0.005 0.051 0.004 0.049
6 0.031 0.128 0.027 0.119 0.062 0.171 0.123 0.828 0.033 0.132 0.028 0.121
12 0.062 0.188 0.056 0.175 0.119 0.235 0.367 1.638 0.064 0.192 0.060 0.184

W
ea

th
er 1 0.016 0.077 0.016 0.074 0.017 0.077 0.058 0.638 0.018 0.079 0.016 0.075

6 0.035 0.126 0.035 0.124 0.057 0.161 0.093 0.781 0.039 0.135 0.037 0.129
12 0.060 0.171 0.056 0.165 0.093 0.207 0.177 1.372 0.063 0.181 0.058 0.168

EC
L 1 0.051 0.152 0.050 0.148 0.072 0.187 0.123 0.862 0.053 0.155 0.049 0.146

6 0.122 0.256 0.122 0.255 0.273 0.386 0.414 0.973 0.130 0.264 0.124 0.259
12 0.143 0.280 0.142 0.273 0.425 0.488 1.223 1.582 0.151 0.207 0.146 0.291

So
la

r 1 0.017 0.060 0.016 0.058 0.014 0.047 0.042 0.362 0.020 0.065 0.015 0.051
6 0.060 0.136 0.057 0.125 0.056 0.103 0.138 0.637 0.065 0.147 0.055 0.101
12 0.091 0.168 0.101 0.176 0.118 0.143 0.352 1.128 0.112 0.140 0.095 0.157

PM
25

1 0.050 0.122 0.051 0.121 0.048 0.117 0.056 0.622 0.054 0.124 0.047 0.115
6 0.250 0.287 0.254 0.286 0.255 0.279 0.478 0.989 0.271 0.296 0.253 0.289
12 0.419 0.391 0.439 0.401 0.526 0.414 1.151 1.532 0.445 0.412 0.427 0.396

Count 7 16 10 0 0 7

Table 7
Multivariate long sequence time-series forecasting results on four datasets (short-term).

Methods Informer Informer+ LSTMa LSTnet Transformer TFTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1 1 0.136 0.251 0.118 0.232 0.165 0.282 0.779 0.549 0.131 0.247 0.123 0.235
6 0.379 0.421 0.370 0.428 0.639 0.511 0.920 0.658 0.383 0.433 0.375 0.431
12 0.494 0.511 0.480 0.487 0.715 0.556 0.965 0.692 0.497 0.515 0.491 0.508

ET
Th

2 1 0.270 0.416 0.174 0.307 0.244 0.366 3.127 1.345 0.197 0.354 0.186 0.348
6 0.722 0.708 0.647 0.648 0.507 0.524 3.141 1.360 0.679 0.673 0.637 0.636
12 1.221 0.916 1.014 0.827 0.662 0.607 3.147 1.361 1.332 0.929 0.995 0.815

W
ea

th
er 1 0.161 0.202 0.159 0.197 0.156 0.201 0.495 0.458 0.164 0.206 0.154 0.197

6 0.226 0.277 0.231 0.284 0.264 0.306 0.537 0.500 0.235 0.287 0.230 0.283
12 0.270 0.326 0.272 0.327 0.324 0.357 0.555 0.519 0.275 0.331 0.274 0.329

EC
L 1 0.183 0.308 0.159 0.200 0.246 0.338 0.631 0.579 0.169 0.237 0.171 0.251

6 0.222 0.341 0.203 0.321 0.285 0.358 0.657 0.604 0.233 0.355 0.212 0.335
12 0.240 0.348 0.222 0.335 0.305 0.371 0.663 0.608 0.251 0.356 0.228 0.338

So
la

r 1 0.017 0.061 0.017 0.062 0.014 0.044 0.577 0.697 0.021 0.066 0.013 0.042
6 0.060 0.135 0.061 0.137 0.057 0.127 0.062 0.724 0.071 0.144 0.054 0.122
12 0.087 0.161 0.092 0.167 0.120 0.159 0.642 0.752 0.101 0.177 0.091 0.165

PM
25

1 0.049 0.120 0.050 0.121 0.049 0.119 0.711 0.584 0.052 0.126 0.050 0.121
6 0.252 0.287 0.244 0.285 0.271 0.297 0.800 0.638 0.264 0.291 0.251 0.286
12 0.433 0.400 0.437 0.402 0.445 0.396 0.834 0.653 0.445 0.409 0.436 0.403

Count 8 16 8 0 0 6

5.3.4. Short-term forecasting
We also show our Informer’s performance under the short-term forecasting setting (horizon≤24) and perform extra 

experiments on the more complicated multivariate case. Meanwhile, for a complete comparison, we introduce two new 
baseline models in this experiment: the temporal fusion transformer model [83] and the vanilla transformer model [14]. 
From Table 6, we can find that on univariate short-term forecasting tasks, our Informer achieves higher performance than 
the baseline methods (25 wins in total). From Table 7, we can also find that our proposed model Informer achieves better 
results on short-term multivariate cases (24 wins in total), which is more evident in data ETTh1, Weather, and ECL. Never-
theless, the LSTMa becomes a strong baseline for extreme cases like a next-step prediction. The LSTMa matches the near 
predictions’ requirement, and the Informer is fit for the forecasting in the long run. For transformer-based models, we can 
see that the vanilla transformer model achieves higher performance than the LSTMa and LSTnet, meaning self-attention 
can bring more information to the final decision layer to better forecast. However, the vanilla transformer performs better 
than the informer models and the temporal fusion transformer, which indicates that the recurrent prediction mechanism 
produces more accumulated errors than the generative prediction mechanism. These results demonstrate that the Informer 
has the potential scalability in forecasting tasks.

5.3.5. Case study
We perform an inference process on each of the comparison methods on ETTm1 to visualize the forecasting results. 

Fig. 10 presents a slice of the predicts of 8 models. The most related works, LogTrans and Reformer, show acceptable 
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Fig. 10. The predicts (len=336) of Informer, Informer†, LogTrans, Reformer, DeepAR, LSTMa, ARIMA and Prophet on the ETTm dataset. The red / blue curves 
stand for slices of the prediction / ground truth.

Fig. 11. The parameter sensitivity of three components in Informer.

results. The LSTMa model is not amenable to the long sequence prediction task. The ARIMA and DeepAR can capture the 
long trend of the long sequences. And the Prophet detects the changing point and fits it with a smooth curve better than the 
ARIMA and DeepAR. Our proposed model Informerand Informer† show significantly better results than the above methods.

5.4. Parameter sensitivity

We perform the sensitivity analysis of the proposed Informer model. All the experiments are conducted on ETTh1 under 
the univariate setting.

5.4.1. Input length
Fig. 11(a) revels how the MSE score varying as the length of inputs increasing. When predicting short sequences (like 48), 

initially increasing input length of encoder/decoder degrades performance, but further increasing causes the MSE to drop 
because it brings repeat short-term patterns. However, the MSE gets lower with longer inputs in predicting long sequences 
(like 168). That is because, the longer encoder input may contain more dependencies, and the longer decoder token has rich 
local information.

5.4.2. Sampling factor
The sampling factor controls the information bandwidth of ProbSparse self-attention in Eq. (9). A proper sampling factor 

helps matching the “sparsity” self-attention assumption. We start selecting from the small factor (=3) to large ones, and 
the general performance increases a little and stabilizes at last in Fig. 11(b). The selecting results verify our query sparsity 
assumption that there are redundant dot-product pairs in the self-attention mechanism. We set the sample factor c = 5 (the 
red line) as the default recommendation.

5.4.3. The combination of layer stacking
The replica of Layers is complementary for the self-attention distilling, and we investigate the individual stack {L, L/2, 

L/4}’s behavior in Fig. 11(c). With the encoder’s input length grows, stacks with different scale show similar “down-up-
down” trends. The longer stack is more sensitive to the inputs, partly due to receiving more long-term information. Our 
empirical selection (the red line), i.e., joining L and L/4, is the most robust strategy.
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Table 8
Ablation study of the ProbSparse self-attention mechanism.

Prediction length 336 720

Encoder’s input 336 720 1440 720 1440 2880

Informer MSE 0.259 0.245 0.236 0.271 0.261 0.257
MAE 0.423 0.416 0.401 0.435 0.431 0.422

Informer† MSE 0.241 0.224 - 0.259 - -
MAE 0.403 0.394 - 0.423 - -

LogTrans MSE 0.263 0.231 - 0.273 - -
MAE 0.478 0.431 - 0.423 - -

Reformer MSE 1.875 1.865 1.861 2.243 2.174 2.113
MAE 1.144 1.129 1.125 1.536 1.497 1.434

1 Informer† uses the canonical self-attention mechanism.
2 The ‘-’ indicates failure for the out-of-memory.

Table 9
Ablation study of the self-attention distilling.

Prediction length 336 480

Encoder’s input 336 480 720 960 1200 336 480 720 960 1200

Informer† MSE 0.241 0.208 0.224 0.199 0.186 0.197 0.243 0.213 0.192 0.174
MAE 0.403 0.385 0.394 0.381 0.369 0.388 0.392 0.383 0.377 0.362

Informer‡ MSE 0.229 0.215 0.204 - - 0.224 0.208 0.197 - -
MAE 0.398 0.387 0.377 - - 0.381 0.376 0.370 - -

1 Informer‡ removes the self-attention distilling from Informer†.
2 The ‘-’ indicates failure for the out-of-memory.

5.5. Ablation study: how well Informer works?

We also conducted additional experiments on ETTh1 to confirm the effectiveness of the proposed components in Informer 
accordingly.

5.5.1. The performance of ProbSparse self-attention mechanism
In the overall results Table 2 & 3, we limited the problem setting to make the memory usage feasible for the canonical 

self-attention. In this study, we compare our methods with LogTrans and Reformer, and thoroughly explore their extreme 
performance. To isolate the memory efficient problem, we first reduce settings as {batch size=8, heads=8, dim=64}, and 
maintain other setups in the univariate case. We replace the self-attention mechanism with LogTrans and Reformer and 
perform a comparison accordingly. In Table 8, the ProbSparse self-attention shows better performance than the counterparts. 
The LogTrans gets OOM in extreme cases because its public implementation is the mask of the full-attention, which still has 
O(L2) memory usage. Our proposed ProbSparse self-attention avoids this from the simplicity brought by the query sparsity 
assumption in Eq. (13), referring to the pseudo-code in Algorithm 1, and reaches smaller memory usage. Another interesting 
finding is that a longer encoder’s input length helps Informer get better performance. When predicting horizon equals 336, 
the Informer can not exceed others with longer inputs. However, the situation reversed for a longer horizon (= 720). Thus, 
the longer LSTF problem, the larger prediction capacity is required for processing longer inputs.

5.5.2. The performance of self-attention distilling
In this study, we use Informer† as the benchmark to eliminate additional effects of ProbSparse self-attention. The other 

experimental setup is aligned with the settings of univariate Time-series. From Table 9, Informer† has fulfilled all the exper-
iments and achieves better performance after taking advantage of long sequence inputs (= 1200). The comparison method 
Informer‡ removes the distilling operation and reaches OOM with longer inputs (> 720). Regarding the benefits of long 
sequence inputs in the LSTF problem, we conclude that the self-attention distilling is worth adopting, especially when a 
longer prediction is required.

5.5.3. The performance of generative style decoder
In this study, we testify the potential value of our decoder in acquiring a “generative” results. Unlike the existing methods, 

the labels and outputs are forced to be aligned in the training and inference, our proposed decoder’s predicting relies solely 
on the time stamp, which can predict with offsets. We do not retrain the model and only add offsets to the target’s original 
time stamps during the inference stage. From Table 10, we can see that the general prediction performance of Informer‡

resists with the offset increasing, while the counterpart fails for the dynamic decoding. It proves the decoder’s ability to 
capture individual long-range dependency between arbitrary outputs and avoid error accumulation.
24



H. Zhou, J. Li, S. Zhang et al. Artificial Intelligence 318 (2023) 103886
Table 10
Ablation study of the generative style decoder.

Prediction length 336 480

Prediction offset +0 +12 +24 +48 +72 +0 +48 +96 +144 +168

Informer‡ MSE 0.207 0.209 0.211 0.211 0.216 0.198 0.203 0.203 0.208 0.208
MAE 0.385 0.387 0.391 0.393 0.397 0.390 0.392 0.393 0.401 0.403

Informer§ MSE 0.201 - - - - 0.392 - - - -
MAE 0.393 - - - - 0.484 - - - -

1 Informer§ replaces our decoder with dynamic decoding one in Informer‡.
2 The ‘-’ indicates failure for the unacceptable metric results.

Table 11
Ablation study of the stamp embedding.

Method ETTh1 (Univariate) ETTh1 (Multivariate)

Prediction length 24 48 168 336 720 24 48 168 336 720

Informer MSE 0.072 0.122 0.172 0.242 0.269 0.577 0.645 0.980 1.028 1.135
MAE 0.206 0.273 0.330 0.417 0.435 0.629 0.665 0.812 0.891 0.936

Informer-SE MSE 0.080 0.193 0.268 0.286 0.274 0.711 0.999 1.119 1.204 1.401
MAE 0.227 0.372 0.449 0.467 0.453 0.618 0.772 0.856 0.891 0.975

Informer† MSE 0.058 0.141 0.207 0.225 0.257 0.620 0.682 0.997 0.994 1.141
MAE 0.186 0.302 0.375 0.398 0.421 0.647 0.671 0.827 0.863 0.937

Informer†-SE MSE 0.080 0.192 0.256 0.198 0.428 0.516 0.649 1.094 1.162 1.267
MAE 0.223 0.367 0.435 0.377 0.587 0.516 0.612 0.857 0.865 0.939

1 ‘-SE’ removes the stamp embedding of Informer.

Table 12
Ablation study of the mixed multi-head attention.

Method ETTh1 (Univariate) ETTh1 (Multivariate)

Prediction length 24 48 168 336 720 24 48 168 336 720

Informer MSE 0.072 0.122 0.172 0.242 0.269 0.577 0.645 0.980 1.028 1.135
MAE 0.206 0.273 0.330 0.417 0.435 0.629 0.665 0.812 0.891 0.936

Informer-mix MSE 0.083 0.132 0.195 0.173 0.074 0.589 0.946 1.294 1.358 1.357
MAE 0.223 0.287 0.365 0.340 0.213 0.552 0.719 0.946 0.972 0.977

Informer† MSE 0.058 0.141 0.207 0.225 0.257 0.620 0.682 0.997 0.994 1.141
MAE 0.186 0.302 0.375 0.398 0.421 0.647 0.671 0.827 0.863 0.937

Informer†-mix MSE 0.059 0.119 0.159 0.131 0.090 0.478 0.627 0.972 0.947 1.154
MAE 0.192 0.273 0.327 0.288 0.239 0.498 0.599 0.781 0.766 0.881

1 ‘-mix’ replace the mixed multi-head attention with the original attention.

5.5.4. The performance of stamp embedding
In this study, we testify to the effectiveness of the proposed stamp embedding, which aims to bring accurate time stamp 

information to the inputs and outputs. From Table 11, we can see that the Informer models without stamp embedding suffer 
a performance decrease in this ablation study experiment. Stamp embedding provides more accurate time information than 
the simple positional embedding method. Meanwhile, removing the stamp embedding makes it hard to perform generative-
style decoding.

5.5.5. The performance of mixed multi-head attention
In this study, we use Informer and Informer† as benchmarks to eliminate the effect of the mixed multi-head attention. 

From Table 12, we can see that, the mixed multi-head attention can help Informer models to gain additional performance. 
This demonstrated that the mixture of local features with respect to different heads can enrich the reception fields, it helps 
to produce more representative features before the fully connected layer.

5.6. The effectiveness of random sampling strategy

We have conducted experiments to show the performance of different sampling strategies. Then Informer applies the 
random sampling strategy, and the following counterparts replace it with variants. The ‘+full’ indicates using all the pairs 
like canonical self-attention as the baselines. To be consistent with Section 4.1.4, the ‘+norm’ selects the largest vector-norm 
of the query-key pairs, namely the max strategy, the ‘+avg’ stands for the central strategy. We also include a non-negative 
matrix factorization (NMF) method as baselines ‘+NMF’. Table 13 and Table 14 show that the random sampling achieves 
best performance at most times (21/40). The random sampling beats the ‘+full’ methods because it could simplify the KL 
measurement between a uniform distribution and unknown distribution with less noise. The core idea is to distinguish 
the dominating keys rather than fully reconstructing the KL measurement. The max strategy shows a potential solution as 
25



H. Zhou, J. Li, S. Zhang et al. Artificial Intelligence 318 (2023) 103886
Table 13
Univariate forecasting results for different sampling strategies.

Methods Informer +full +norm +avg +NMF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.072 0.206 0.099 0.250 0.092 0.238 0.089 0.240 0.133 0.308
48 0.122 0.273 0.124 0.285 0.097 0.243 0.162 0.327 0.120 0.288
168 0.172 0.330 0.107 0.258 0.100 0.252 0.123 0.277 0.217 0.394
336 0.242 0.417 0.100 0.251 0.114 0.265 0.144 0.301 0.206 0.377
720 0.269 0.435 0.095 0.249 0.084 0.220 0.102 0.245 0.167 0.337

ET
Th

2

24 0.093 0.240 0.081 0.220 0.075 0.207 0.080 0.218 0.083 0.222
48 0.115 0.270 0.213 0.371 0.135 0.286 0.170 0.332 0.140 0.291
168 0.169 0.334 0.267 0.414 0.238 0.394 0.297 0.444 0.231 0.388
336 0.205 0.375 0.272 0.424 0.275 0.424 0.250 0.407 0.264 0.416
720 0.232 0.395 0.240 0.400 0.249 0.407 0.260 0.416 0.270 0.422

Count 10 2 8 0 0

Table 14
Multivariate forecasting results for different sampling strategies.

Methods Informer +full +norm +avg +NMF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.577 0.629 0.458 0.473 0.517 0.532 0.505 0.515 0.517 0.515
48 0.645 0.665 0.747 0.684 0.689 0.635 0.737 0.662 0.689 0.633
168 0.980 0.812 1.178 0.885 1.021 0.789 0.969 0.761 1.054 0.809
336 1.028 0.891 1.078 0.901 1.229 0.893 1.296 0.918 1.328 0.937
720 1.135 0.936 1.429 0.967 1.410 0.993 1.300 0.946 1.372 0.962

ET
Th

2

24 0.520 0.623 0.416 0.499 0.501 0.541 0.527 0.576 0.590 0.602
48 0.998 0.831 2.295 1.231 1.795 1.115 2.029 1.142 2.185 1.224
168 1.604 1.122 3.106 1.411 3.266 1.423 3.278 1.569 2.634 1.307
336 1.823 1.177 3.125 1.499 2.539 1.316 3.300 1.524 2.861 1.309
720 2.484 1.371 3.761 1.635 2.680 1.281 2.251 1.253 2.355 1.337

Count 11 4 1 4 0

Table 15
L-related computation statics of each layer.

Methods Training Testing
Time Memory Steps

Informer O(L log L) O(L log L) 1

Transformer O(L2) O(L2) L

LogTrans O(L log L) O(L2) 1�

Reformer O(L log L) O(L log L) L

LSTM O(L) O(L) L
1 The LSTnet is hard to present in a closed form.
2 The � denotes applying our proposed decoder.

we discussed, especially for the heavily long-tailed distribution. Considering the computation cost and implementation, we 
recommend the random sampling strategies as the current finest solution.

5.7. Computation efficiency

With the multivariate setting and all the methods’ current finest implement, we evaluate the iterative efficiency on both 
training and testing process. The input length is tuned from 48 to 720 in Fig. 12. During the training phase, the Informer 
(red line) achieves the best training efficiency among Transformer-based methods. During the testing phase, our methods are 
much faster than others with the generative style decoding, which is crucial for real-world deployment. The comparisons 
of theoretical time complexity and memory usage are summarized in Table 15. The performance of Informer is aligned 
with the runtime experiments. Note that the LogTrans focus on improving the self-attention mechanism, and we apply our 
proposed decoder in LogTrans for a fair comparison (the � in Table 15).

6. Conclusion

In this paper, we studied the long-sequence time-series forecasting problem and proposed Informer to predict long se-
quences. Specifically, we designed the ProbSparse self-attention mechanism and distilling operation to handle the challenges 
of quadratic time complexity and quadratic memory usage in vanilla Transformer. Also, the carefully designed generative de-
coder alleviates the limitation of traditional encoder-decoder architecture. The experiments on real-world data demonstrated 
the effectiveness of Informer for expanding the prediction capacity in the LSTF problem.
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Fig. 12. The total runtime of training/testing phase.

In future work, we plan to investigate better input representations for time-series data with rich information types, 
such as spatial structure and semantic connections. Besides, with the in-depth applications in some critical decision-making 
scenarios, the input time-series data may contain outliers and malicious attacks due to the inevitable error-prone data 
collection. Improving the model’s robustness to outliers or attacks is also an interesting direction.
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