Front. Comput. Sci., 2025, 19(11): 1911376
https://doi.org/10.1007/s11704-025-41143-4

RESEARCH ARTICLE

Towards uncertainty-calibrated structural data enrichment with

large language model for few-shot entity resolution

Mengyi YAN!, Yaoshu WANG?, Xiaohan JIANG!, Haoyi ZHOU?3, Jianxin LI (3<)!

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 Shenzhen Institute of Computing Sciences, Shenzhen 518110, China
3 School of Software, Beihang University, Beijing 100191, China

© Higher Education Press 2025

Abstract Entity Resolution (ER) is vital for data integration
and knowledge graph construction. Despite the advancements
made by deep learning (DL) methods using pre-trained
language models (PLMs), these approaches often struggle with
unstructured, long-text entities (ULE) in real-world scenarios,
where critical information is scattered across the text, and
existing DL methods require extensive human labeling and
computational resources. To tackle these issues, we propose a
Few-shot Uncertainty-calibrated Structural data Enrichment
method for ER (FUSER). FUSER applies unsupervised
pairwise enrichment to extract structural attributes from
unstructured entities via Large Language Models (LLMs), and
integrates an uncertainty-based calibration module to reduce
hallucination issues with minimal additional inference cost. It
also implements a lightweight ER pipeline that efficiently
performs both blocking and matching tasks with as few as 50
labeled positive samples. FUSER was evaluated on six ER
benchmark datasets featuring ULE entities, outperforming
state-of-the-art methods and significantly boosting the
performance of existing ER approaches through its data
enrichment component, with a 10X speedup in uncertainty
quantification for LLMs compared to baseline methods,
demonstrating its efficiency and effectiveness in real-world
applications.

Keywords entity resolution, large language model,

database, uncertainty qualification, entity matching

1 Introduction

Entity Resolution (ER) aims to find and identify all tuple pairs
from multiple data sources of relational tables with different
schema and descriptions, that refer to the same entities. Entity
resolution is a central step in data integration pipelines, with
the goal of integrating records from multiple datasets.
Typically, ER task can be divided into two main components,
namely entity blocking (EB) and entity matching (EM). Entity
blocking aims to coarsely filter and rank all potential matches

Received October 24, 2024; accepted March 12, 2025

E-mail: lijx@buaa.edu.cn

tuples, avoiding the quadratic computational cost for the
subsequent matching phase. Entity matching aims to verify
whether these tuple pairs refer to the same entities.

Nowadays, deep learning based ER models that integrate
pre-trained language model (PLMs, e.g., RoBERTa [1])
typically deliver superior performance. PLMs are pre-trained
on extensive corpora and offer a deeper understanding of
language compared to traditional word embedding techniques,
allowing PLMs to enhance model generalization across new
tasks and datasets more effectively.

However, these methods often cost substantial human effort
to label data as matches or mismatches, alleviating overfitting
issue by expanding the training set. They are mostly designed
to handle relational data with well-organized schemas, so that
the feature alignment relations are learned, e.g., for a pair of
tuples in Product domain, if they have similar Brand and SKU
attributes, they may refer to the same entity with high
probability. Furthermore, since PLMs are limited by input
token lengths (typically no larger than 512 tokens [1-5]), they
are limited to applying in short text datasets.

Example 1 Figure 1 shows two real-world examples, where
tuples are both unstructured and long texts. The left part of
Fig. 1 is derived from the dataset Company [6], where Entity 1
represents a company’s Wikipedia page and Entity 2
represents the homepage of certain company’s website, both
of which exceed 2000 words in length. The ER task requires
one to determine whether these two entities refer to the same
company or not. The right part of Fig. | is derived from the
dataset semi-text-w [7], where Entity 1 and Entity 2 represent
different webpages for a watch on different e-commerce
websites. The ER task here is to determine whether the two
web pages describe the same product.

As discussed in Example 1, solving the Entity Resolution
(ER) problem in real-world scenarios often involves
Unstructured and Long-text Entities (ULE in short).
Existing ER methods face significant challenges in addressing
ULE due to the following reasons: (1) Input Length
Constraint: Current PLM-based ER approaches limit the
input length to 512 tokens, causing a decline in performance

mailto:lijx@buaa.edu.cn
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4
https://doi.org/10.1007/s11704-025-41143-4

2 Front. Comput. Sci., 2025, 19(11): 1911376

Needle in the Haystack

Entity 2
s 38

\ ‘automotive industrial contacts
12- eng itachndeu...

Entity 1

Design fate controlling interest
acquired by Lamborghini...

N the giugiaro family retained % its sporty and elegant lines are an
ownership of the remaining 302-] homage to the great italian
shares in the company ... 363 tradition for sportsc...
taldesign giugiaro s.p.aisa more than 100 proposals arrived
Text design and engineering company from europe usa brazil and 571-
Description based in moncalieri italy that ~ 1673- vietnam all news... 593

: 1703
traces its roots to the 1968... . instagram youtube linkedin

WWww.conceptcarz.com. 2523 italdesign giugiaro s.p.a .

COnCepICATZ.Cam . 2011 . archived registered office via san quintino
from the original on 2011 02... 28 torino italy piva...

2501-
252%

Lack of Domain Knowledge

Suunto Men\'s Ambit 3 HR Bluetooth GPS. 17 /
Chronograph Watch "@en Men\'s Watch 35

(S5020678000)-WATCH SHOP.com™...

COMPATIBLE DEVICES WITH THE

Connectivité\":
'Bluetooth Smart ...
Précision GPS de 5 secondes

R

102 Boussole Planificateur 2.
SUUNTO MOVESCOUNT APP ARE: 135 d\‘entrainements fractionnés 85
iPad 3rd generation and later iPad “Entrainements fractionnés avec
Mini/iPhone... i vocale...

"Key features: MULTISPORT Route
navigation Up to 25 h battery life with GPS
You maywantiosee silver 10:35 Waich

boutique"@en-GB'

2554 g iy
289 “Application\’: ‘Application Sl.llllllo\ 255-
Movescount\’, *Autonomie\’: 289

K\‘]S h\’, \‘Dimensions\’:*50 x 50 /

-

15,5 mm\...ss-0206-78000

This May be a page talking
about Lamborghini.

{" This May be an article talking
gMismatch x about Italian traditions.

o

This May be a page talking about e-shop app.
This article discussed about Apple Company.

] Brand: Suunto
;Mismatchx Function: Bluetooth, GPU

Directly This articlediscussed about This article discussed about The sku is 10-35silver. sku: 'S0 x 50 x 15, 5 mm
Extraction *. Guigiaro Family. alian Automotive Industries. o
T (" Generated by LLM:
- Tierative Optimized Generated by LLM: @ [icrative Optimized Attributes by LLM: & THE 5 ot st abet
Structural gy Attributes by LLM: - i —]) B webpage ADOul
) This is a company page in WikiData. [—] . Watch, omit recommendations.
Guidance for ‘ Company_Name Only concentrate on company info. ‘ Brand/Modelno/Dilameter/Gender Fe Domain 10:35 is not a valid SKU for
Enrichment Company_Area Kll‘:;"]‘::i"e = Schema ature/Color Knowledge \ watch. ...
‘ Schema Short_Description pe da“c{: chema Guidance
3
Entity 1: { Entity 2:{ Entity 1: { (Entity 2: {
Company_Name: Italdesign Giugiaro, Company_Name: Italdesign Brand: Suuto, Modelno: $SS020678000, Brand: Suuto, Modelno: ss-
Company_Area: Automobile Design, Guigiaro, Dilameter: NaN, Gender: Man, Matchy . 0206-78000,
Short_Description: Design and MatchV Company_Area: Industrial Design, Color: NaN, Dilameter: NaN, Gender: Man,
Expecied engineering company known for Short_Description: Automotive, Feature: chronograph watch, Bluetooth, Color: NaN,
SWiRREIen automobile design of Lamborghini } industrial design company} P __Feature: Bluetooth, GPS }
Fig. 1 Illustration of challenges in structured data extraction for unstructured long-text entities. Entity 1 and Entity 2 refer to the same entity.

We sample multiple text chunks, and denote their token range at the upper right corner. Among these chunks the relevant context for ER are
marked as Red, and the irrelevant context as Blue. As discussed in introduction, we summarize two main difficulties for long-text ER as Needle
in the Haystack, which means relevant information hides in any place of a long text; and Lack of Domain Knowledge, which means a given LLM

cannot pay attention to the relevant attributes to extract and compute

as input text length increases. These methods often rely on
truncation or summarization techniques, e.g., TF-IDF, which
inevitably result in information loss and introduce errors. (2)
Needle in the Haystack [8]: This indicates the difficulty of
extracting small, valuable information (the “Needle”) from
extensive irrelevant text (the “Haystack”). Most ER
techniques rely on schema information to align key features,
but in ULE-ER scenarios, the absence of schema makes it
challenging to extract and align relevant details from long,
unstructured texts. (3) Insufficient Domain Knowledge:
Domain-specific abbreviations and acronyms exacerbate the
difficulty of ER tasks. A lack of domain understanding leads
to models focusing on noise, while missing critical details.

These challenges make existing ER solutions highly
dependent on large amounts of annotated data (e.g., over 20K
labeled samples [2]) or large parameter-size Large Language
Models (LLMs; e.g., 70B LLM [9]) to achieve competitive
performance for ULE-ER in full-data training, incurring
significant annotation and computational costs. To address
these issues, it is crucial to minimize manual annotation
through high-quality few-shot learning approaches for ER,
which focus on improving the quality of unlabeled data.
Numerous works [2,4,10] explore few-shot ER methods with
minimal annotated tuple pairs.

The above challenges are not exclusive to ER but are also
observed in related areas such as question answering [11],
generative information Retrieval [12,13], and Retrieval-
Augmented Generation (RAG) systems [14]. Managing long-
text scenarios accurately remains a significant barrier for LLM
in small parameter size.

It is worth noting that although several related works [15,16]
have introduced LLMs into ER tasks, directly replacing the
PLM backbone of ER methods with an LLM backbone, which

has a longer input window and more model parameters, is
infeasible, since such approach does not address the
aforementioned limitations essentially. Furthermore, in few-
shot setting, LLMs have emerged new issues, including lost in
the middle, overfitting problem and high training cost. We
provide a detailed experimental discussion in Section 3.3.

To address the aforementioned challenges, a straightforward
approach is to extract and enrich structured information from
ULE, a process commonly referred to as information
extraction [17]. As shown in Fig. 1, the objective of
Structural Data Enrichment (SDE) is to extract and
organize a set of structured attributes with a clear schema from
ULE. This improves data quality and effectively reduces
entity text length without significant information loss,
facilitating ER tasks. Given the lack of annotated data for
structured extraction, LLMs are employed to generate
extraction results, as they have demonstrated effectiveness and
robustness in similar tasks [18,19] through in-context learning
ability [20]. However, LLMs are known to suffer from
reliability issues, such as generating factual inaccuracies,
commonly referred to as hallucinations [21]. As shown in the
middle of Fig. 1 (Directly Extraction), directly querying LLMs
for SDE is often infeasible. Without schema constraints and
domain knowledge guidance, LLMs tend to generate incorrect
attributes and values, leading to factual errors that degrade
data quality. Moreover, LLMs are not efficient enough to
handle large collections of tuples effectively.

To overcome these limitations, we propose a novel Few-
shot Uncertainty-calibrated Structural Data Enrichment
method for ER, abbreviated as FUSER. This method
enhances the quality of SDE by employing unsupervised
pairwise entity enrichment. FUSER leverages LLMs to extract
well-organized structural attributes from unstructured entities,

Mengyi YAN et al.

while simultaneously generating additional schema and
domain knowledge guidance to act as constraints. To mitigate
the risk of factual errors and hallucinations, FUSER
incorporates a two-tier uncertainty-calibration module that
evaluates and selects reliable enrichment solutions from
multiple candidate outputs generated by LLMs, considering
both attribute-level and entity-level uncertainty. Additionally,
FUSER introduces a lightweight ER pipeline capable of
efficiently performing both blocking and matching tasks with
as few as 50 labeled positive samples. Experimental results
demonstrate the superior performance of FUSER in both
tasks, highlighting its effectiveness and efficiency in solving
the ULE-ER problem.
Our contributions are summarized as follows:

e We propose the few-shot ULE-ER problem, addressing
a real-world issue that has long been overlooked in
related research, highlighting the critical role of
structural data in ER.

e We propose a structural data enrichment framework,
adopting pairwise enrichment method to extract well-
organized structural attributes from unstructured entities
using LLMs, explicitly extracting and aligning features
across different data sources.

e We adopt a two-tier uncertainty qualification module,
which both considers the generation quality of attribute-
level and entity-level, to rank and select reliable
generated attributes.

e We propose a LLM-based few-shot ER pipeline, capable
of performing both blocking and matching tasks
efficiently with up to 50 labeled positive samples.

The rest of this paper is organized as follows: Section 2
introduces the related work for ER and uncertainty
qualification (UQ for short). Section 3 first provides the
definition of the ULE-ER problem, then discusses the
challenge of directly applying LLMs for ULE-ER. Sections
4-6 sequentially introduce the main modules in FUSER for
solving few-shot ULE-ER problem. Section 7 reports a series
of comparative experiments. Section 8 concludes the paper.

2 Related work

In this section, we classify ER into entity blocking and entity
matching tasks, and review existing uncertainty qualification
works for LLM.

2.1 Entity blocking
Blocking, a key step in tackling the inherent quadratic
complexity of entity resolution, has been addressed through
various methods [22]. We classify entity blocking into the
following categories.

(1) Rule-based methods. There are methods that design
handcrafted rules, e.g., Matching Dependencies (MD) [23],
DNF [24], and meta blocking rules [25]; Besides, some works
learns entity blocking rules with a few labeled training
instances [26,27]. Although rule-based methods are
transparent and easy to understand, they lack of enough ability
of expression to retrieve tuples with the same semantic
meanings;

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 3

(2) Traditional ML models. A host of works [28,29] adopt
active learning to enhance the quality of the training data so
that the entity blocking models are trained more accurately;

(3) Deep learning based models. Most of works [5,30-34]
rely on representation models and contrastive learning
strategies with hard negative sampling to efficiently retrieve
top-K nearest neighbours from large-scale collections of
tuples.

Differing from existing works, we focus on enhancing the
quality of training data by leveraging data enrichment to
improve the performance of downstream entity blocking
models.

2.2 Entity matching
As the matching step of entity resolution, the entity matching
is classified into the following categories:

(1) Rule-based methods [35-37] design logical rules to
predict whether pairs of tuples are matched or not;

(2) Traditional ML models [10,38] adopt traditional
machine learning models, e.g., tree-based models, SVM or
Gaussian Mixture Model, and transform the EM to a binary
classification task in the supervised or unsupervised manner;

(3) Deep learning methods [2,6,39-42] that design neural
networks for the EM task, e.g., LSTM or transformer based
neural network architectures.

Furthermore, a few works design learning strategies to boost
the performance of EM, including data augmentation [3]
under low-resource setting [43], unsupervised learning [44],
transfer learning [45-48], semi-supervised learning [4], and
multi-task learning [49]. There are also works that integrate
entity blocking into EM, e.g., [31,33,50] and adopt LLMs
[9,15,16,51-53].

Compared with existing works, we mainly focus on
leveraging the capabilities of LLMs and generating reliable
information for tuple pairs, so that downstream entity
matching models could have better performance under few-
shot labeled samples and small parameter-size open-source
LLMs (e.g., <7B).

2.3 Uncertainty qualification for LLM

Uncertainty quantification (UQ) is a fundamental concept in
machine learning and statistics, signifying that model
predictions carry a certain level of wvariability due to
incomplete information [54].

Although UQ has been well studied in the area with distinct
labels, such as classification tasks in computer vision [55],
NLP [56], graph learning [57], and knowledge graph [S58]
areas, the effective UQ for open-form LLMs, e.g., GPT series
[59], LLaMA [60], Mistral [61] is still lack of full
investigation. LLM-based open-form generation domains are
flexible and effectively infinite, i.e., any generations at any
length that are semantic consistent with the right answer can
be regarded as true.

ECE [62] calculated large scale empirical evaluations on
how the model configuration (e.g., model parameter size,
model architecture, training loss) of LLMs affect uncertainty.
Based on such finding, several works [56,63] target at
quantifying uncertainty by directly prompting the language
model to generate uncertainty scores regarding to their own

4 Front. Comput. Sci., 2025, 19(11): 1911376

generations. SelfCheckGPT [64] measures the faithfulness of
generations by quantifying the consistency of multi-sampled
generations, i.e., different generations should be consistent if
the model really captured the concept of the input query.
Malinin et al. [65] estimates the free-form LLMs uncertainty
level by calculating the accumulative predictive entropies over
multiple generations. EZ2CNN [66] incorporates entity-type
information and cascaded neural networks to effectively
handle triple overlapping and improve the precision of relation
extraction in long sentences.

Among these methods, token-level UQ has proven efficient
in hallucination detecting on various NLP tasks [67], however
such methods fall short in evaluating semantic relations
among different but consistent generation results. To
compensate such shortage, there are also multiple works that
focus on sentence-level UQ. Semantic Entropy (SE) [68] is
presented to estimate the “semantic equivalence” difficulty in
UQ. SE gathers generations sharing the same semantics into
clusters, and calculate cluster-wise predictive entropy as the
uncertainty measurement with DeBERTa-based classification
model. Recent studies [69,70] also extend UQ to both token
and sentence level for more fine-grained qualification.

We aim to design metrics from multiple structural
generations to characterize the uncertainty of LLMs. Based on
ER scenario, our solution focuses on structural LLM output,
regarding the attribute- and structural-level generative
uncertainty, which are not fully explored by prior related
works.

3 Problem definition and framework

In this section, we present the prior knowledge of uncertainty
qualification with LLM in Section 3.1, formalized the studied
problem in this paper in Section 3.2, discuss the challenges of
directly applying LLMs for addressing the problem in Section
3.3, and present our proposed framework FUSER in Section
3.4.

3.1 Uncertainty qualification with LLM

LLMs [59,60], which typically contain billions (or more) of
parameters and pre-trained on massive text data [71], have
demonstrated surprising emergent behaviors and good zero-
shot generalization to new tasks. Most decoder-only LLMs,
e.g., LLaMA [60] and Mistral [61], output generations in a
free-form and auto-regressive manner, such that the
probability distribution of the next token can be progressively
predicted. Here, we classify LLMs as (a) black-box if they are
close-source, e.g., GPT series; for such models, we can only
retrieve its output text without initial parameters; and (b)
white-box LLMs, e.g., LLaMA and Mistral, if they are open-
source; this said, we can deploy them locally and get its output
and initial parameters, e.g., embedding and generation
probability per token (see below). In this paper we mainly
focus on UQ with white-box LLMs.

We denote by x and s the input prompt and the output query
with N tokens, respectively; here, LLM has to generate output
s regarding prompt x, where s is an output sentence
s ={z1,...,2y} containing N tokens z; (1 <i< N). For a given
LLM, denote by p(zi|ls<,x) the probability of generating z;

under x, where s<'€s refers to the the generated tokens
{z1,...,2i-1} prior to s.

Given the generation probability p of sentence s, UQ for
LLM is to evaluate the uncertainty score u(s) for each
generation of LLM based on p, in its parameter level. The
uncertainty score u is inversely proportional to the confidence
of the generated text for LLM. A widely-adopted UQ method
is Predictive Entropy (PE) [56], defined as the entropy over
the whole sentence s:

N

u(s) = —log p(slx) =) ~log p(zils™,x),
i=1

1)
where u(s) is the accumulation of the token-wise entropy.

3.2 Task definition

Tables. We denote 7; and 7, as two (left and right)
collections (tables) of entity records (tuples) with attribute
schema R;={A11,...,Ai} and R, ={A],...,A}}, respectively,
where R; and R, may be different. Each record #; € T} (resp.
t, € T;) is a set of attribute-value pairs {Af,vf} (resp. {AL,vi}),
where vf (resp. Vi) is the value of the ith attribute Af (resp.
A7) of tuple # (resp. #,). For simplicity, we omit superscripts /
and r unless specifically mentioned.

Entity resolution (ER). Denote D ¢ T; X T, as the set of pairs
of tuples from 7; and T, respectively. A typical ER pipeline
consists of two steps: blocking and matching. The blocking
step generates a candidate set C C D with a high recall by
removing unnecessary comparison candidates. The matching
step is then to determine whether the candidate pair (#,1,) € C
match or not. Existing DL-based ER methods usually rely on
training set with labels, denoted as (D,Y) = {(#,t,,y)}, where
Y is the set of labels of tuple pairs in D (groundtruth). We
use D to represent (D, Y) for short.

Entity Blocking. Most DL-based blocking methods follow the
dense retrieval paradigm [30,31,34] to design models. These
models, denoted as Memped, serialize a tuple ¢ as textual
description, and transform it into a dense embedding vector.
One can obtain the candidate set C based on the similarity
between embeddings Memped(;) and Membed(fr) of tuples #
and ¢, from T; and T, respectively. Meanwhile, Mecmpeq is
further fine-tuned with training set 9 to align features
between tuples in 77 and 7.

Entity Matching. DL-based matching models, denoted as
Mnatch, take the serialized embedding of candidate pairs
(t1,1,) as input, and outputs a prediction ¥ to decide whether
(;,1,) is match or not. Similar to Membed, Mmatch 1S trained on
D, and its parameters are updated such that it can correctly
determine whether the input tuple pairs match or not.

Next, we define the unstructured long-text few-shot ER
problem (ULE-ER for short). In such setting, (a) #; € T; and
t, € T, are both long text descriptions of certain entity without
any schema information (i.e., R; and R, are not available); and
(2) the size of labeled set |D] is limited in few-shot setting,
where only a small number of positive tuple pairs are
available.

Mengyi YAN et al.

Definition 1 (few-shot ULE-ER) Given two relational tables
T; and T, that contain long-text tuples ¢ without any schema
information, and a small set D of matched pairs of tuples from
T, and T,, respectively, the objective of few-shot ULE-ER is
to identify all matching tuple pairs from 77X T,

3.3 Challenges of directly applying LLMs for ER

In this subsection, we outline the challenges of directly
applying LLMs for addressing ER tasks. Moreover, we
motivate this work by demonstrating the unsatisfied
experimental result of the straightforward idea above; in
particular, we list a few representative results in Figs. 2 and 3
(see FUSER w/o Enrichment in Table 9 for more results).

Challenges. We list the challenges of fine-tuning LLM for
ULE-ER in few-shot setting as follows:

(a) Lost in the middle [12]. It is a common phenomenon when
employing LLMs on tasks with long text, i.e., LLM tends to
focus on information presented in the beginning/end of a long
text, while neglecting (possibly) relevant information hidden
in the middle (“Needle in the Haystack™).

(b) Overfitting issue. LLM, with a huge size of parameters, is
prone to memorize and overfit to few-shot training examples
D, even worse than PLMs.

F1-Score by dataset and model configuration
87.08 s LLM with Enrich

30 LLM w/o Enrich
74.07 "= LLM w/o pseudo-label
wam PLM w/o Enrich

60

40

F1-Score (100-Scale)

201

Semi-Text-W
Datasets

Company

Fig. 2 Entity matching performance of LLMs and PLM-based ER solutions

2000 { Training time 1055 s -
== Memory usage

1750
1500 L40 .
2 9
1250 -
: 130 &
g =
g 1000 842 ¢ 22.58 GB %‘
H 0 r20 €
c Q
=

500

F10
250

1024

2048
Cutoff length

4096

Fig. 3 Training cost of LLMs in different maximum input token lengths. We
apply the contamination-free packing [72] method to merge/pack short inputs
into a single input at cutoff length, so the sample number in 4096 is fewer
than that in 2048, leading to less training time

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 5

(c) High Training cost. When input length in-creases, it leads
to a rapidly increased training cost a rapidly increased training
cost, e.g., GPU memory and training time; and a larger size of
labelled D to solve ULE-ER.

The performance of directly employing LLM on ULE-ER.
In the sequel, we show that it is impractical to directly employ
LLM on ULE-ER, with the unsatisfactory experimental results
on datasets Company (CO) and semi-text-w (SW); on average
the token length of each entity in CO and SW is 2789 and 345,
up to 8685 and 3926, respectively. Moreover, we show few
experimental results of our proposed framework (FUSER in
Section 3.4), illustrating that above challenges can be well
addressed if we do it right. We show the results in Figs. 2 and
3; see more results in Section 7.5.

Settings. In Fig. 2, we show the results of (a) LLM with
Enrich (FUSER), which applies both LLM-based enrichment
and pseudo-label generation for training LLM-based ER model,
(b) LLM w/o pseudo-label, which is trained only on few-shot
D with enrichment, and (c) LLM w/o Enrich, which is the
straightforward LLM-based ER solution without enrichment.
Moreover, in Fig. 3, the input token length for LLM is extend
up to 4096, while PLM w/o Enrich uses the same data Dgr
with input token length of 512, and truncate exceeding text.
We report our findings below.

Effectiveness. Figure 2 represents the EM performance in
100-scale F1 score for the above four methods. Directly
applying LLM for ULE-ER suffers a significant performance
drop. The reason lies on that changing backbone model from
PLM to LLM does not essentially solves the issues above.

Comparing the performance of LLM with and w/o Enrich,
LLM suffers from calibrating its attention to the right place in
long-text scenarios, resulting in “lost in the middle”
phenomenon. PLM-based methods have a more significant
performance drop, since they have to truncate useful
information that exceeds its inherit input length.

Comparing LLM with and w/o pseudo-label, we can see that
even if the data is well-structured, the few-shot |D| still
hampers LLM-based ER performance, caused by overfitting
issue.

Efficiency. Figure 3 illustrates the training cost of dataset CO
under different input length (w.r.t. cutoff length) when fine-
tuning LLM. We can see that a shorter input token length, e.g.,
1024, cannot cover enough relevant information; worse still, a
larger input token length window brings out increasing
training cost in both training time and GPU memory usage,
leading to significant resource wastage.

According to the above observations, we can see that
directly apply LLM for ULE-ER is impractical, both in
effectiveness and efficiency.

3.4 The FUSER framework

To solve the aforementioned concerns, we propose FUSER, a
framework with three sequentially executed components:
structural data enrichment (Section 4), uncertainty
qualification module (Section 5), and few-shot ER with LLM

6 Front. Comput. Sci., 2025, 19(11): 1911376

(Section 6). Table 1 provides the main abbreviations,
variables, and their corresponding descriptions used in this

paper.

Structural data enrichment (SDE). This component takes ULE
in 7; and 7, as input, conducts pairwise enrichment with
recursive structure-aware chunking strategy, and outputs
enriched entities with summarized and structural format. SDE
is designed to solve Needle in the Haystack problem by
leveraging RAG-based LLM generation with structural
constraint (in response to challenge (a)).

Uncertainty qualification module (UQ). This module
calibrates and ranks multiple generated candidates from the

Table 1 General notations with corresponding descriptions
Symbol Description
ULE Unstructured Long-Text Entities

uQ Uncertainty Qualification

SDE Structural Data Enrichment
PLM Pre-Trained Language Model, e.g., RoOBERTa
LLM Large Language Model, e.g., LLaMA, Mistral

G Generative model, represent LLM

T, T, Left and right relational table for ER

1ty Tuple/record pair with match/mismatch label y
Ai€R Single attribute A; in schema R

veEVy Attribute value v and value set V for attribute A
Membed Embedding model

T Selected tuple pairs, (#,4,) € TC Ty x T,

D Train set O with a few positive pairs

Duypdate D adding self-labeled tuple pairs

Rextend Extend schema generated by LLM

88T Domain knowledge guidance/prompt for T
S(@) Structured enrichment result for tuple ¢

E,u(t) Uncertainty qualification for tuple ¢

sim(-) Semantic similarity for any input pairs

p(s) generation probability for sequence s

previous SDE part; it is to ensure the semantic consistency of
the enrichment results with minimal additional computing cost
(in response to challenge (c)).

Few-shot ER with LLM. It takes the enriched and calibrated
high-quality data as input, significantly shortens the input
length, and reduces the training cost of both PLM and LLM-
based ER solutions. Moreover, it cooperates with UQ-based
sampling strategy to extend the diversity of training set with
pseudo-labeled positive/negative pairs, such to alleviate the
overfitting issue (in response to challenge (b)).

4 Retrieval-augmented pairwise data
enrichment with LLMs

In this section, we present the data enrichment part of FUSER
with LLMs; it has a simple but effective paradigm, with the
overall pipeline in Fig. 4.

Given two relational tables 7; and 7, without any structural
information, FUSER sequentially conducts data enrichment
with three modules:

(1) FUSER applies a RAG component to retrieve and select
tuple pairs T CT;xT,, maximizing common information
(Section 4.1).

(2) FUSER iteratively generates and selects additional
enriched schema R for T, as well as domain-related prompt
guidance g by LLMs, and validated by matching relevance
with label; in particular, T,R,g will be concatenated and
queried by a local LLM (Section 4.2).

(3) FUSER takes tuple pairs set T, selected extra schema
Rextend and optimized domain knowledge set gt as input, and
generates structured enrichment output results T in schema
Rextend (Sections 4.3 and 4.4).

4.1 Tuple pairs selection with RAG

To address the aforementioned challenges in information
retrieval task for unstructured long texts (ULE), we propose a
series of optimization methods based on LLM generation

Fine-Tune Generate)| (Brand Different Structured
Retrieve & | numm—)] Modelno Generation
Dilameter Y ¥
RAG Model Rerank Embedding)| Gender 1 1
;] Feature Si(8)--S(1)
Train Set D Colot : ! i’
s)
Extended S
Schema @)
Text Tuple Pair D G Structural Enrich S
Left table 7, - - .
4 Chun K Selectlon]] : i(l;)
r _ - - el t
2 | webpage about Watch (@)
| — GEDE |35 s not valid SKU
DR T | DR e Related 1O Domain
] N Context & Knowledge
4 P — Retrieval Guidance g (&)
Right table 7, CHUNK, - CHUNK,, T‘}P(‘:e l;aixr ;‘3‘ Structured Output Set T,
1 r

Fig. 4

Illustration of structural data enrichment component in FUSER

Mengyi YAN et al.

process, focusing on both enhancing the granularity of text
segmentation and improving the robustness of data alignment
across different sources. Please check the left part of Fig. 4 for
a brief illustration.

Text chunk. Firstly, to tackle the “Needle in the Haystack”
problem, we apply the recursive structure-aware chunking
strategy [73,74], a hybrid solution combining fixed-size
sliding window and structure-aware splitting. It attempts to
balance fixed chunk sizes with linguistic boundaries, offering
precise context control. In detail, such method tends to divide
the initial long text for ULE ¢ under several structural
separators, e.g., newline characters or HTML symbols. Next
we initialize the sliding window, denoted as CHUNK,; for ith
sliding window, covering several consistent structural
segments within the input window size for embedding model
Membed - Please check Fig. 5 for illustration.

For example, the first chunk covers /; segments, which sum
do not exceed the input window size:

CHUNK1 = {C],...,Cll}. (2)

As the sliding window moves forward, next chunk cover l»
segments:

CHUNK2 = {chrl?"'achrlz}’ (3)

where the discard segments {ci,...,c,} is approximately the
step length, and the covered segments {Cy+1,-..,Cm+i,} do not
exceed the input window size. Such procedure goes on until
the last segment reaches the end of text ¢.

Such method effectively keeps the structure granularity and
semantic integrity, avoiding the risk of segment relevant
information into distinct chunks. It will also keep the
coherence of context, and highlight the middle text in ¢, by
overlapping it with multiple chunks, avoiding “lost in the
middle” phenomenon.

RAG model. To address the issue of domain gap between the
left table 7; and the right table 7., we use a lightweight
Sentence-Bert [5] model as the initial RAG embedding model
Membed, based on the train set D which contains multiple
matched tuple pairs. Furthermore, we apply the initialized
Membed to mine hard negative samples across tables for data
labeled as positive in D.

For example, if (#,7,) € D is labeled to be match, then
Membed Will search top-k similar tuples in 7, for # exclude ¢,
as negative tuples, and vice versa. We denote the updated train
set from D as Dypgate, containing positive and self-labeled

eeesios [

Mempeal?)

CHUNK, CHUNK,

t ¢ G| G ¢, c

Structural separator

Fig. 5 [Illustration of recursive structure-aware chunk in FUSER

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 7

negative samples. Subsequently, we fine-tune Mempeq using
contrastive loss [75] with Dypdae. This process aims to
minimize the domain gap between 7; and 7',

Finally, based on the chunked text set, we embed all tuples
of T; and T, using the fine-tuned embedding model Membed,
and for each tuple #; in the left table, we select the top-k most
similar tuples from the right table {r),...,/4} € T,, iterating
over the left table 7; to form the tuple pair set T, and vice
versa. We further denote the organized tuple pairs set as T.
This design is based on a simple assumption that semantically
similar but structurally dissimilar tuple pairs can complement
each other’s information with high confidence, thereby
avoiding the hallucination issue caused by in-context
guidance.

4.2 Extended schema and domain knowledge generation

Directly using LLM for enrichment of the tuple pair set T is
considered risky, as T may contain tens of thousands of tuple
pairs without schema information, and lacks effective domain
knowledge to restrict the generation quality. However, recall
the updated labeled training dataset Dypgae from Section 4.1,
which contains a comparatively smaller volume of data with
high-quality annotations. Based on Dypdate, We query LLM to
determine the schema and domain knowledge for 7;U 7.

Domain knowledge generation. Firstly, determining the
domain knowledge guidance is relatively straightforward. We
sample and serialize several tuple pairs (1,%r,y) from Dypgate,
and input it into the generative LLM G, allowing it to generate
domain knowledge guidance based on the provided tuples. We
list the prompt guidance and generated domain knowledge
example in Figs. Al and A2 at Appendix. Next we apply the
global-level UQ module (detailed later in Section 5) to select
the most convincing k guidance for the final injected domain
knowledge as prompt, denoted as gr.

Extended schema generation. The schema generation for T
entails calculating the correlation between the extended
attribute value set V ={v;,...,v,} and the label set V.
Specifically, tuples (f,f,,y) extracted from Dypdae enable
LLM to generate various possible additional attribute
candidates R,j, enhancing the ER tasks with labels y. Using
LLM, we query tuple pairs from Dypdae to generate enriched
values based on R,; and measure the correlation between
these values and Y. We select the top 5 attributes with the
highest correlation scores from Ry to form the final extended
schema Rexiend, as these are most relevant to the EM task
performance.

In detail, to evaluate the quality of extended attribute
Rextend, for each tuple pair (#,r,y) € Dypdate and attribute
veV, for attribute Rextend generated by LLMs, we utilize
Membeq to transform v into embeddings Mempeg(v). We
utilize Sim(v,v’) to evaluate the semantic similarity of two
attribute values v,»’ in embedding level. To assess the
correlation between v €V, and the labels Y, we apply the
Point-Biserial Correlation [76]:

Vi —V nin

“

8 Front. Comput. Sci., 2025, 19(11): 1911376

where o and y; represent the average values of attribute v
under labels True (w.rt. match pairs) and False (w.r.t.
mismatch pairs) respectively in Y, s is the standard deviation
of {Sim(v,v)V" € Va,v" # v} within Dypqate, 1o and ny are the
counts of mismatched and matched instances, and
n = [Dypdatel. The top 5 attributes in Ry with the highest PBC
values are selected for the extended schema Reyiend, R for
short.

The aforementioned methods are capable of both black-box
and white-box LLMs. For consistency, we utilizes the same
white-box local LLMs to handle the above steps.

4.3 Structured data enrichment

After acquiring the tuple pairs set T, domain knowledge
guidance g, and extended schema R, we serialize and
concatenate g, each tuple pair (#;,7,) € T, and R, and query the
white-box LLM G, denoted as G(g,(#,%),R). Such query for
LLM leads to generate JSON structured data, denoted as S(#;)
and S(t,), both of which are multiple dictionaries formatted
outputs {S ,'(1‘)}2‘=1 under schema R. Different from existing
multi-step retrieval methods [77], FUSER generate
Si(t),Si(t;) with all attributes in R through single-step
generation query for tuple pair #;,¢,.

Additionally, we record the token-level generation
probabilities for single structured outputs S(¢) as P(f). These
probabilities represent the generation likelihood of each token
within S(#)) and S(¢,), further utilized for uncertainty
qualification.

4.4 Implementation

Ensuring stable JSON output from a white-box LLM is non-
trivial. To address this challenge, we employed the xgrammar
[78] method to guarantee consistent JSON formatting by the
LLM. This method integrates a character-level parser with a
tokenizer prefix tree to establish a sophisticated token filtering
mechanism. Additionally, we leveraged vLLM-based [79]
efficient inference method, incorporating optimizations
through KV cache and similar query aggregation to accelerate
the enrichment process. In our experiments, with 2 A800
GPUs, we complete the whole enrichment of 10,000 tuple
pairs within an average of 535 s, with a parsing failure rate of
less than 0.1% and an average generation speed exceeding
9,000 tokens per second.

5 Two-tier uncertainty qualification

In this section, we present the UQ part of FUSER, which aims
to select and calibrate high-quality enrichment results from
LLM-generated candidates.

In summary, in Section 5.1, we analyze the necessity of
applying UQ to measure reliable outputs from different
generations of LLMs, as well as the limitations of existing UQ
methods for structured outputs. To address such concern, in
Sections 5.2 and 5.3, we propose attribute-level and entity-
level UQ -calculation methods, focusing on the local and
global levels, respectively. Section 5.4 summarizes the above
methods and introduces strategies for selecting generated
outputs based on UQ results. Finally, Section 5.5 concludes by
discussing how we accelerate the UQ calculating process.

5.1 Analyzing exist UQ methods

Although Section 4 adopts SDE to generate a set S(r) of
multiple structured output results for each tuple ¢, the quality
measurement and selection of these different generated results
presents a non-trivial problem. Due to differences in text
chunking, pairwise context selection and prompt guidance, for
the same attribute A € R, the enriched attributes value V4 for
a given tuple ¢ can vary and be contradictory. While several
works on UQ for LLM propose various metrics for measuring
output quality, these methods are not directly applicable to the
pairwise enrichment scenario. Figure 6 provides an illustrative
example of this issue.

Example 2 As shown in Fig. 6 (follows the left example in
Fig. 1), for the input tuple ¢ on the left, to enrich the attribute
Company-Name, LLM answers multiple contradictory results
due to differing contexts. If one were to solely rely on the
token probability associated with each generated result, as
estimated by the PE method described in Section 3.1, an
erroneous selection “Lamborghini” might be chosen as the
result because it appears earlier in the text, thus exhibiting
lower uncertainty and high probability.

To solve such False but Convincing hallucination by LLM,
recent works, e.g., Semantic Entropy [68], SAR [69] point out
that semantic consistency is key to calibrate UQ results. To
achieve this, they sample LLM generation multiple times for
single query, and additionally compare the semantic
correlation within these answers. Generations with higher
semantic correlation compared to other outputs will be

Mutual semantic

[Unstructured long entity] Enrich: LLM Attribute generate similarit Global generate Uncertainty-
company_name answers probability Cz‘llh‘;“::‘ uncertainty calibrated prob
Design fate controlling interest -
acquired by Lamborghini... 12-
the giugiaro family retained 2 Lamborghini * x 0.338
ownership of the remaining 2\»%-
shares in the company... .
spaisa ; i E Concept Carz * x0.168 fr—
design and engineering company x + |
based in moncalieri italy that 157}"| Structural . X
traces its roots to the 1968 ... = Enrichment Italdesign v 0.320
Www.conceptcarz.com. lez)%
conceptcarz.com. 2011 . archived Italdesign guigiaro \ x (0.507
from the original on 2011 02...

Structural data enrichment

Fig. 6

Misleading high naive generation

Uncertainty-based calibration Final selection

Illustration of uncertainty calibration component in FUSER, where the example at left corner is extracter from Fig. 1. The wrong answer

for enriching attribute Company-Name is marked as X, and right answer as v/. After structural data enrichment process in Section 4, LLM may
generate multiple candidates for single entity. Uncertainty calibration component aims to rank and select the right answer, alleviating

hallucination issue

Mengyi YAN et al.

provided with a higher weight, and vice versa.

However, existing UQ methods predominantly cater to
open-form generation with LLMs and primarily focus on
token-level and sentence-level estimations and selections.
These approaches are unsuitable for the ULE-ER scenario in
FUSER due to several critical reasons: (a) token-level
selections are inappropriate for constrained structural outputs
as they may disrupt the inherent structure of the data;
(b) sentence-level UQ is not applicable either, as a single
sentence may encompass multiple structured outputs,
complicating the clarity and utility of such measurements in
this context.

In response to these limitations, we propose a novel UQ
approach that operates at both the attribute-level and entity-
level. This method provides a finer granularity in calculating
uncertainty, significantly enhancing the relevance and
applicability of UQ in structured data environments, with high
efficiency.

5.2 Attribute-level uncertainty qualification

As discussed in [80], attribute values that have higher
relevance scores, i.e., semantically consistent, are more
convincing than others. Therefore, we simply reduce sentence
uncertainty by enlarging its generative probability with a
relevance-controlled quantity.

Given a tuple ¢ with attribute A € R, in which containing
different enriched attribute values Va(f) = {v/la,...,v/’f‘}, while
the domain knowledge guidance over ¢ is remarked as g for
short, the attribute-level UQ score {u(vi)V, € Va(1)} is
calculated as:

u(vy) = E(v',, Va(t),g) = —log(p<v5;|g>

Z‘sim(vi‘, vﬁ)p(vilg)
1#]

t

))

attribute relevance
where p(v,|g) is the generative probability of v,, and 7 is the
temperature parameter used to control the relevance shifting
scale. And the sim(vf;‘,vf‘) is the semantic similarity between
attribute pair (vg,vi‘), calculated by the embedding model

Attribute-LevelUQ
Similarity within v,

ﬂ"l I 1 1 1 -
vy 1 Vs Vi, Vi, |
1 S e e) e e e
1 1
L |
! - : V,241 1
1 1
i 1
1 1
1 1
1 1
ot
1
L1 v
T
[—
V4, V4, V4, V4, Y,
Fig. 7

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER

Membed in Section 4.

It is worth noting that Eq. (5) shares a similar form with SE
[68] and SAR [69], both of which aims to reduce the
uncertainty of semantically consistent sentences. SE conduct
such component with bi-directional entailment prediction,
while SAR achieves this with weighted relevance scores, both
on sentence level, however FUSER calculates E; in attribute
level. We denote u(v,) = E(v',,V,g) as the uncertainty score
for generated attribute value vg €t over attribute A. The
middle part of Fig. 6 demonstrate a simple illustration of
attribute-level calibration.

5.3 Entity-level uncertainty qualification
Different from existing sentence-based UQ methods, FUSER
also pay attention to entity-level UQ calibration, denoted as
u(S (1)), qualifying the generation quality of single SDE
S(#) € S(v). 1t is worth noting that S (¢) is constrained in JSON
structure with tokenizer prefix tree, so the token-level
generation probability p(z;|S ®<,x) for S(1) may be biased
from the traditional open-form LLM generation condition.

To avoid such impact for structural output, we calculate the
generation probability of u(S (#)) by the sum of its all enriched
attributes in extended schema R ={A,...,A,}. We mark qu,

as single enriched value for attribute A; in S;(r), while V A_/.(t)
as all enriched value set for attribute A; in all enriched
solutions S(t) = {S ,-(t)}f.‘:] , representing different k enrichment
structured results for tuple f. The generation probability for
Si(1) 1is:

P/(Si(0),8) = exp| = Y Eivly ,Va,.0) | (6)
=1

J

As presented in Fig. 7, if we expand all LLM-generated
candidates S(f) to a relational table, where ith row represents
structured output S;(f) and jth column represents attribute
A;j € R, in this perspective Eq. (5) can be regarded as vertical
comparison across different values for the same attribute A;,
and Eq. (6) can be regarded as horizontal estimation across
different attributes in R for the same output S;(¢).

Based on Eq. (6), we slightly modify Eq. (5) to estimate UQ
for S;(t) € S(¥):

Structural-Level UQ
Similarity within S (¢)

u(S, (1))

:

50 i—*p’(Sz 0.8 v uS®)
r=- b

& i

i
u(S; (1))

=—>: Passing Semantic Relevance Score
===+»>: Passing Uncertainty Qualification Score

E_Sk U} i — (S (1), 8)
—
NG

Illustration of attribute- and entity-level UQ calculation for FUSER

10 Front. Comput. Sci., 2025, 19(11): 1911376

E(Si(1),8(),8) = —log(P'(Si(t)lg)

1<j<k

; sim(S (1), S j(1)p’ (S j(Ig)
i#]

(7

t

structural relevance

Equation (6) also applies Mempeq to calculate semantic
relevance, denoted as sim(S ;(#),S ;(f)). The right part of Fig. 6
illustrate the entity-level uncertainty calibration. We highlight
that calculating Eq. (7) only requires additional comparison
across S;(t)€S;, since attribute-level comparison result
across Vq; has been computed and cached in the previous
step. Recall the domain knowledge generation phase in
Section 4.2, we can also apply Eq. (7) to calculate the UQ
score u(g) for various g € G, by replacing p’ with generation
probability for g.

5.4 Overall measurement and enrichment selection

After calculating attribute-level UQ u(vg), and its entity-level
contextual UQ u(S ;(r)) where v}, € S;(¢), the final uncertainty
estimation for v, is denoted as

Uvy) = (1= Du(vy) + (S i(1)), ®)
where A is the hyperparemeter controlling the relation
between attribute and entity level UQ.

Recall that a lower certainty indicates a better quality result,
given UQ scores {U(v{k),...,U(v’/j)} for &k wvalues
{v}‘, .. ,vf‘} € V4, we have two different sampling strategy to
generate the final selection for #[A].

One is greedy-based selection with certainty, marked as
Certain(S(?)), where we always select vi‘ with the lowest UQ
score U (vi‘). Such solution is similar to the greedy decoding
strategy for LLM, which only generate results with the highest
probability, however hampers data diversity.

Another strategy is uncertainty-based sampling method,
denoted as Prob(S(1)),where for #[A], {v},...,1X} is selected
by probability Softmax(-U’(v}),...,—U’(X)), and U’(v}) is
normalized from U(Vi\). Such selection aims to upsample
various diversified and reliable data from LLM-generated

results, similar with the speculate decoding strategy [81] for
LLM.

5.5 Implementation optimization

Previous work on LLM open-form generation for calculating
UQ typically involves high computational complexity.
According to the analysis in existing literature [69,82],
computing UQ generally consists of three parts: LLM
generation, Logits Computing, and Semantic Relevance
Calculation.

Among these process, LLM generation part requires
generating multiple different responses for the same input
query. Fewer response generations can impair the accuracy of
UQ, while a larger number of responses significantly increases
computational costs [82]. Logits Computing part involves
parsing these responses, extracting relevant information, and
calculating the generation probability p. Semantic Relevance

requires frequently calculating the semantic relevance score
across generated outputs. Previous research lacks decoupling
of these processes and group query computation optimization,
leading to high computational complexity in the enrichment
and UQ process.

To improve the computational efficiency for UQ, we have
decoupled above three parts and implemented batch inference.
In the generation and logits computing phases, we have
accelerated the LLM generation speed by vLLM with KV
cache, and increase the efficiency of parsing structural data
(detailed in Section 4.4). In the semantic relevance phase, we
have aggregated and batch-computed the similarity score
Sim(-) at both the attribute level and the entity level, avoiding
replication computations of same value pairs across different
entities.

Combining such optimization strategy, as detailed in
Table 8, FUSER achieves a non-trivial 10x speedup than
baseline UQ solutions.

6 Workflow for few-shot ER with LLM

We present a light-weighted workflow that solves blocking
and matching tasks coherently, based on fine-tuning local
LLMs in RAG paradigm.

6.1 Dense-retrieval based entity blocking model
The training process and backbone for the blocking model,
denoted as Myjock, is highly similar with Mempeq, Which is
extensively discussed in Section 4. However, a critical
distinction lies in the nature of the training data. Instead of
using the text chunks for 7 as in Memped, Mbiock €employs a
more compact yet information-dense structured output S(¢).

The initial dataset Dgr for training comprises a small set of
manually annotated match tuple pairs (#1,%2,y). In an effort to
robustly augment Dggr, the positive samples within Dggr are
derived from the combined sets Prob(S(z1)) x Prob(S(%)).
Conversely, the hard negative samples are generated from
Prob(S(#1)), and are then sampled based on embedding
similarity from Prob(S(#;)) for i # 1,2.

This upsampling strategy mitigates the risk of overfitting to
a biased distribution from limited annotated samples,
leveraging a weak label prior method [83]. Upon completing
the training of Mpjock With contrastive learning loss, during
inference, Certain(S(¢)) is used to sample and generate the
embedding vector for the tuple ¢, ensuring stable and reliable
inference results.

6.2 LLM-based few-shot entity matching model

The training set Dgr is also applied for the LLM-based
matching model Mpaen. However, when sample
(S(t1),S(%2),y) € DEr, the serialize input of the sample for
fine-tuning LLM contains multiple values:

Serial(t1,12) = {g,[S(t1),S (t2)],ICL[S (11),S (t2)], y}.
In Eq. (9):

®

e ¢ means domain knowledge guidance, that are selected
in Section 4, and acts as prompt.

® [S(#1),S(2)] denote serialized structural output for
11,1, represents as input.

Mengyi YAN et al.

e ICL[S (#1),S (t2)] means multiple in-context demonstra-
tions ({#,¢,y}€ Dgr with match and mismatch
examples, which is selected base on semantic similarity
derived from Mpjock.

We apply supervised fine-tuning for a white-box local LLM
to conduct EM task with LoRA [84]. Similarly, during
inference with trained Mpaeen, Certain(S(z)) is applied to
sample enriched result.

7 Experimental results

We empirically evaluated the performance of our method,
FUSER, on 6 benchmark datasets. We aim to answer the
following questions:

(1). In general, can LLM-based FUSER effectively solve
ULE-ER problem in few-shot setting, compared to that of
PLM-based ER baselines?

(2). How is the retrieval quality of data enrichment in
FUSER? Can it outperform existing approaches based on text
augmentation and summarization? Can it effectively tackle the
Needle in the Haystack problem in ULE-ER?

(3). Does the UQ component in FUSER outperform other
LLM-based UE methods w.r.t. computational efficiency,
without degrading effectiveness?

We presented our experimental settings in Section 7.1.
Section 7.2 reports our results and findings in both entity
blocking and entity matching tasks, regarding Question 1;
Section 7.3 compares the effectiveness of data enrichment
module in FUSER with 4 data augmentation baselines for ER,
while Section 7.6 evaluates FUSER’s retrieval quality and
computational efficiency, answering Question 2; Section 7.4
compares the UQ module of FUSER with 3 widely-adopted
UQ baselines in both effectiveness and efficiency, in response
to Question 3. Section 7.5 and 7.7 provide ablation study and
hyperparameter sensitivity analysis.

7.1 Experimental settings
We start with our settings.

Datasets. We conducted experiments on the following 6
benchmark datasets, as shown in Tables2 and Al of
Appendix.

Company [38]. A benchmark dataset applied for Ditto [2]. The
left and right tables are Wikipedia page and website homepage

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 11

for certain company respectively, both of which are

unstructured.

semi-text-w [7]. A benchmark dataset applied for PromptEM
[4]. The left table is semi-structured data, while the right table
is unstructured webpage content for certain watch from
different data sources.

semi-text-c [7]. A benchmark dataset from machamp [7],
applied for PromptEM [4]. The left table is schema-free
structured data, while the right table is unstructured webpage
content for certain electronic product from different data
sources.

wdc-all-small [85]. A benchmark dataset from WDC dataset
[85]. Both left and right tables in it are unstructured text
description for certain product from different data sources.

Walmart-Amazon-Dirty [38]. A benchmark dataset applied
processed from Ditto [2]. Both left and right table are
unstructured description of product from different sources.

Abt-Buy-Dirty [38]. A benchmark dataset applied and
processed from Ditto [2]. Both left and right table are
unstructured description of product from different sources.

Following Ditto, we obtained a few-shot labeled training
dataset D by randomly sampling 50 positive tuple pairs, and
retained the left and right tables as unlabeled. The statistics of
all datasets are summarized in Table2 and Appendix
Table Al.

Baselines For entity blocking task, we select the following 3
widely-adopted baselines:

e DeepBlocker [30]: a transformer-based entity blocking
model in the self-supervised strategy;

e Sudowoodo [31]: a self-supervised contrastive learning
framework that combines blocking and matching.

e STransformer [5]: a pre-trained BERT-based model
that converts sentences into dense embedding vectors.
STransformer applies the same backbone model and
training loss function with FUSER, so STransformer
can be regarded as an ablation of FUSER without data
enrichment.

For entity matching task, we select the following 5 baselines:

e Ditto [2]: an entity matching method based on PLM
RoBERTa [1], and uses various data perturbation,

Table 2 Datasets used in our experiments, # means Number of, 7,7, represents left/right table in ER; |D| means the number of few-shot labeled samples; for
schema type, unstructured means each tuple in this table only contains text description without schema, while semi-structured means each tuple in this table
contains various schema. The train/validation/test split and dataset characteristics are kept the same with existing ER works [2,4]

Dataset Domain # All # Match Schema type of T} Schema type of T # |Ty|-#IT,| |DI/ (# All)
Company(CO) [38] Company 112,632 28,200 Unstructured Unstructured 28,200-28,200 0.07%
Semi-Text-W(SW) [7] Watch 9,234 1,089 Semi-Structured Unstructured 9,234-9,234 0.54%
Semi-Text-C(SC) [7] Electronic 20,897 2,940 Semi-Structured Unstructured 20,897-20,897 0.24%
WDC-AIl-Small(WS) [85] Product 13,436 3,516 Unstructured Unstructured 7,437-8,091 0.77%
Abt-Buy(AB) [38] Product 9,575 1,028 Unstructured Unstructured 1,081-1,092 0.87%
Walmart-Amazon(WA) [38] Product 10,242 962 Unstructured Unstructured 2,554-22,074 0.81%

12 Front. Comput. Sci., 2025, 19(11): 1911376

domain knowledge injection and text summarize
strategies to augment data.

e Rotom [3]: an entity matching model leveraging PLMs
and select various data augmentation operators through
reinforcement learning.

e PromptEM [4]: a PLMs-based entity matching model,
which is fine-tuned with prompt-tuning. PromptEM
leverages a student-teacher training framework, and
shows better performance in few-shot learning
scenarios.

e Unicorn [49]: a PLM-based multi-task data matching
framework with mixture-of-experts architecture, and
pre-trained on various task-relafed corpus.

e JellyFish [15]: a LLM-based entity matching model
using LoRA-based instruction-tuning method.

For uncertainty qualification efficiency evaluation, we also
apply the following unsupervised baselines, selected from Im-
polygraph [82]:

e PE [56]: predictive entropy method, which is defined as
the entropy over the whole sentence, detailed in Eq. (1).

e SE [68]: semantic entropy method, which introduce the
‘semantic entropy’ difficulty in UQ of open-form
LLMs, and tackles this issue by gathering sentences
containing the same meaning into -clusters and
calculating clusters-wise entropy with DeBERTa [86]
model, predicting entailment relations.

e SAR [69]: semantic entropy method with shifting
attention to relevance improvement, which pay attention
to both token and sentence-level UQ. SAR evaluate
sentence relevance with cross-encoder model STSB-
RoBERTa, directly calculate sentence pair similarity.

For a fair comparison, all baselines are provided with the
same set of 50 positive tuple pairs (denoted as D), all labeled
negative pairs from the training set of the benchmark, and the
same relational left and right tables. In contrast, FUSER is
provided with O and relational left and right tables but
without the labeled negative pairs, representing few-shot
setting. Notably, Unicorn and JellyFish were also pretrained
on additional labeled entity matching corpus.

Evaluation metrics For entity blocking, following existing
work [30], we report top-k recall and top-k precision. Denote
left table as 77, while right table as 7, all of which exclude
duplicated records, and their match record pair set is marked
with Ty as groundtruth. For each tuple in 7}, top-k prediction
means predict k most relevant tuples from 7,, and the

prediction set is denoted as Tpredict- Then top-k recall and
precision stands for

Tt N Tore
Recall(k) = M’ (10)
| T gt
Tt O T
Precision(k) = & Tpredict (11)
|Tpredict|

For entity matching, following existing work [2], we report
precision (P), recall (R) and F1-score (F) here. All results are
reported in 100-scale.

Configurations We select Mistral-7B [61] as the backbone
model of Mpaeen and G, bge-rerank-large [87] as the pairwise
similarity calculation model for UQ in Egs. (5) and (7), bge-
large-en [87] as the embedding model for Memped, Molock- We
fine-tune the Membeds Mblock With FlagEmbedding [87]
framework, and the LLM-based Mp,een with llama-factory
[84].

Following existing UQ works [69], we set the top-k
sampling parameter for data enrichment as 5, relevance
parameter ¢ in Egs. (5) and (7) as 1e—3, and the learning rate
of Membed> Mmatch as 1e—5, le—4 separately.

Following the findings in [73,88], we set the sliding window
size as 512, and step size limit as 256 for text chunk for all
datasets exclude CO. We apply 1024 sliding window size and
256 step size for CO. Following the findings in eliminating
RAG redundancies [14,88], for certain extreme long entity, we
calculate the cosine similarity among its text chunks using
Membed, and filter the redundant chunks. We conduct our
experiment on a single machine powered by 1.5TB RAM and
128 processors with Intel® Xeon® Platinum 8358 CPU
@2.60GHz and 2 NVIDIA A800 GPUs. Each experiment was
conducted twice, averaging the results reported here.

7.2 Entity resolution results
We next report our findings. As mentioned above, all methods
are evaluated under the same few-shot setting.

Entity blocking First we report the result of entity blocking.
Table 3 reports the top-1 recall and precision of all models,
which is crucial in real-world RAG scenarios, since user may
only want to check and use the first item without the willing of
selecting from multiple options, while top-1 recall can be
roughly regarded as the matching proportion of the first
prediction.

It is evident that our method FUSER significantly surpasses
all baselines in top-1 recall. For the datasets CO, SW, and SC,
where entities predominantly consist of lengthy texts

Table 3 Performance of entity blocking with precision, recall and top-K. Here we fix K =1 to evaluate top-1 retrieval ability of each blocking model

Datasets DeepBlocker [30] Sudowoodo [31] STransformer [5] FUSER

Recall / Precision K Recall / Precision K Recall / Precision K Recall / Precision K
Company(CO) 24.75/24.75 1 39.24/39.24 1 67.43/67.43 1 78.67 / 78.67 1
Semi-text-c(SC) 0.20/0.47 1 0.92/2.13 1 12.40/28.36 1 14.97 /34.24 1
Semi-text-w(SW) 0.18/0.46 1 0.18/0.46 1 11.79/25.69 1 16.15/35.18 1
Wdc-all-small(WS) 7.93/2.07 1 7.45/1.95 1 7.11/1.86 1 32.39/8.47 1
Walmart-amazon(WA) 57.79/21.77 1 63.51/23.92 1 80.24/30.22 1 82.01/30.89 1
Abt-buy(AB) 38.22/36.35 1 69.84 / 66.42 1 89.59/85.20 1 94.06 / 89.45 1

Mengyi YAN et al.

exceeding the representational capacities of the baseline
models such as DeepBlocker and Sudowoodo, the
embedding vectors generated by these methods fail to capture
the implicit features of entities effectively, resulting in
inadequate extraction of key information. Although the
STransformer baseline employs the same contrastive learning
methods, backbone model, and text input lengths as FUSER,
its inability to leverage data enrichment for extracting
effective attributes still fails to address ‘needle in the
haystack’ issue.

The conclusion for datasets WS, WA, and AB differs from
previously discussed datasets. These datasets typically feature
shorter texts, yet they include many specific abbreviations and
terms, such as SKUs, which pose challenges for baseline
models in segmentation and tokenization. This difficulty
results in a misalignment between the left table 7; and the
right table 7,. In contrast, FUSER mitigates this issue by
unifying schema of 7; and 7, after enrichment and
incorporating domain knowledge to interpret and populate the
corresponding values, thereby significantly enhancing the
retrieval quality of Mpjock-

We additionally report the lowest recall, precision, and K
values when the top-K recall reaches 0.9, as shown in Table 4.
If this condition is not met, we will provide recall/precision for
the top-20. Table 4 evaluates whether the blocking model can
identify the correct entity within a specified budget limitation,
e.g., 20 in this scenario. It is evident that FUSER is the only
method to achieve a recall above 0.8 within 20 candidates
across all datasets. Additionally, FUSER is also the most cost-
efficient blocking model, meaning it achieves the same
performance with the fewest candidates K.

Entity matching In Table 5, we report the main result of
entity matching, comparing FUSER with different baseline
models, containing PLMs and LLMs-based models.

When compared to PLM-based baseline solutions such as
Ditto, Rotom, Unicorn, and PromptEM, FUSER consistently

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER

13

outperforms all baselines, achieving an improvement of over
20% in F1 score. These results underscore the significance of
data enrichment and UQ selection techniques utilized by
FUSER. In the few-shot setting, most baselines face
challenges related to overfitting and unbalanced sample
distribution. However, FUSER mitigates these issues by
upsampling positive tuple pairs with structural data
enrichment under UQ. This approach allows FUSER to
upsample positive pairs in the training set O, for example,
e.g., transforming 50 positive samples into 500 pairs
remaining data distribution diversity. This addresses the
unbalance data distribution issue in few-shot learning.
Additionally, FUSER incorporate blocking model Mypjock to
generate self-labeled hard negative samples. The above
methods ensure that FUSER maintains leading performance
across various scenarios.

Compared to LLM-based EM methods, such as JellyFish
backboned with a 13B LLM model, FUSER shows an average
Fl-score improvement of over 10%, particularly in typical
ULE-ER scenarios like the CO, SW, and WS datasets with
45% fewer parameter size and 20% lower training costs.
These results underscore the significance of UQ-controlled
data enrichment.

We observe that the performance gap between FUSER and
the LLM baseline JellyFish widens as the text length and
complexity increase. For example, in the CO dataset, due to
the higher complexity of long texts, which means relevant
information is typically hidden in the middle (illustrated in
Fig. 8), directly using long texts for EM remains a challenging
task for LLM. This results in a performance drop of over 50%
for JellyFish compared to FUSER. However, for relatively
shorter entities (e.g., WA/AB dataset), basic LLM
demonstrates a strong understanding ability over unstructured
data, with fewer instances of the lost in the middle issue that is
typical of ULE. As a result, the performance of FUSER and
JellyFish is comparable.

Table 4 Performance of entity blocking with precision, recall and top-K. Following [34], we report the smallest recall/precision/K when the corresponding

top-K recall achieves 90. If not, we will report recall/precision at top-20

Datasets DeepBlocker [30] Sudowoodo [31] STransformer [5] FUSER

Recall / Precision K Recall / Precision K Recall / Precision K Recall / Precision K
Company(CO) 47.85/2.39 20 57.39/4.46 20 83.25/4.16 20 86.42/4.32 20
Semi-text-¢(SC) 5.57/0.64 20 8.57/1.16 20 83.35/9.53 20 89.31/10.22 20
Semi-text-w(SW) 1.92/0.24 20 5.23/0.67 20 64.93/7.07 20 80.55/8.77 20
Wdc-all-small(WS) 55.00/0.72 20 53.04/0.92 20 57.39/0.65 20 90.35/1.39 17
Walmart-amazon(WA) 90.12/3.39 20 90.54/8.53 4 86.38/1.63 20 93.76 / 17.65 2
Abt-buy(AB) 75.19/3.57 20 90.37/28.73 3 74.32/3.53 20 94.06 / 89.45 1

Table 5 Entity matching performance in comparison to the baselines, n/a means the method cannot be terminated within 10 hours nor generate valid

predictions. Unicorn and JellyFish are also pre-trained on various EM datasets

for better performance, as discussed in their paper

Datasets FUSER Ditto [2] Rotom [3] Unicorn [49] PromptEM [4] JellyFish [15]
R F P R F P R F P R F P R F P R F

WA 8736 86.01 86.68 78.43 20.72 32.78 11.80 73.10 20.30 89.99 60.62 72.44 93.55 30.05 4549 80.09 93.78 86.39
AB 87.44 9126 89.31 9724 5145 6730 1460 4270 21.70 97.11 49.02 65.16 98.04 4854 64.94 9938 78.15 87.50
(6[¢) 98.52 78.01 87.08 25.06 100.00 4008 n/a n/a na 77.60 884 1588 n/a n/a na 9643 22.07 3592
WS 91.55 9499 9324 71.89 2028 31.64 274 7500 40.2 9597 4373 60.09 91.55 28.05 42.94 96.64 5292 68.39
SW 92.85 61.61 74.07 1143 100.00 20.51 21.70 470 7.80 90.93 35.06 51.72 11.69 17.06 13.87 49.41 60.19 54.27
SC 81.85 71.67 76.42 13.85 100.00 24.34 2340 16.20 19.20 99.99 39.33 56.46 17.00 13.30 14.92 77.79 7443 76.08

14 Front. Comput. Sci., 2025, 19(11): 1911376

However, regarding efficiency, as demonstrated in Fig. 3,
for ULE-ER process, JellyFish requires to extend the input
window size to 4096 tokens for optimal performance during
training, while FUSER can perform effectively with 2048
tokens for datasets CO, SW, and SC, and can reduce further to
1024 tokens for WA, AB, and WS datasets. We assert that
FUSER strikes a superior balance between EM effectiveness
and efficiency, demonstrating significantly higher data usage
efficiency compared to other LLM-based EM methods.

7.3 Data enrichment results

In this section, we compare the data enrichment method in
FUSER with existing data augmentation baselines for ER.
Main result is listed in Table 6.

Since existing information retrieval method cannot be
directly applied in our setting, we introduce the following data
augmentation baselines, which are widely adopted among
existing ER solutions.

e DK+DITTO: domain knowledge (DK) injection method
applied by Ditto. Such method applies Named-Entity
Recognition (NER) model Spacy [89] to identify and
insert external attributes to the original model.
Following Ditto [2], we set DK type to Product, which
contains Product ID, Brand, Configurations (num.).

e Summarize+DITTO: summarize method applied by
Ditto, based on TF-IDF summarize technology, which
retains the non-stopword tokens with the high TF-IDF
scores.

e InvDA + Rotom: generative data augmentation methods
applied by Rotom. InvDA require to fine-tune a PLM
model T5 [90] with D on each dataset, then inference
such fine-tuned model to generate augmentation data.

e PTuning + PromptEM: prompt-tuning method applied
by PromptEM. PromptEM incorporates a mixture of
augmentation strategies for few-shot EM task, including
prompt optimization, uncertainty-based pseudo-label
sample generation and prompt-tuning technique for
fine-tuning PLM.

To ensure a fair comparison, we substitute Mpaten in
FUSER from Mistral-7B to PLM-based Unicorn, while
preserving the enrichment results and self-labeled training
dataset Dgr. All methods in Table 6 utilize PLMs as
backbone model with similar parameter size among all
methods. We select three typical ULE-ER datasets: CO, SW
and SC, highlight the necessity of data augmentation.

As presented in Table 6, the structural data enrichment
method for FUSER achieve the leading performance, with
more than 30% performance improvement in F1 score on

average.

DK retrieves domain knowledge by pre-defined attribute
and corresponding pattern, however it rely on pre-defined
pattern to extract additional attributes, which lead to a high
failure rate in unstructured text, where pattern may be vary in
different entities. In not-defined domains, e.g., CO dataset,
DK may inject irrelevant information and result in 0.16 F1
performance drop. So DK cannot address “Lack of Domain
Knowledge” issue well.

TF-IDF-based summarization was ineffective in the ULE-
ER scenario. The primary issue is the “Needle in the
Haystack” problem, where TF-IDF scores fail to accurately
estimate useful information. Effective summarization
necessitates a comprehensive understanding of the text, which
TF-IDF cannot achieve. Although we observe a minor
performance boost in summarization for DITTO, this method
is not applicable in other contexts.

The generation-based method InvDA also falls short in the
ULE-ER setting. InvDA requires a separate training of the
generation model based on the training set 9, and its
generation process is slower (taking an average of 4,320 s to
generate 1,000 samples, 30-50 times slower than FUSER).
However, the contribution of its generated results to the
improvement of EM performance is limited. This is because
InvDA lacks structural restrictions and domain knowledge
guidance. The underlying reason is that the generative
capabilities of the PLM TS5 are significantly lower than current
LLMs.

PTuning focuses on improving EM performance at the
prompt optimization level. However, we argue that the
difficulty in the ULE-ER problem lies in effective information
retrieval and extraction, rather than better methods of model
training. This also proves that the structural data enrichment
method of FUSER is independently viable, effectively
enhances data quality at the data level.

7.4 Uncertainty qualification efficiency

In this section, we compare the UQ efficiency and their
performance with 3 widely-adopted UQ baselines, namely
Predictive Entropy (PE) [56], Semantic Entropy (SE) [68], and
Shifting Attention Relevance (SAR) [69]. Due to the limitaion
of baseline methods, which can only estimate UQ on token-
level and sentence-level, we uniformly apply baseline UQ
methods on sentence-level, predicting 5 times over all entities
teT;UT,, denoted as G(g,t,R), and select the best result with
the lowest UQ score. After generation and UQ selection, we
organize the self-labeled training data Dgr and select Unicorn
as the EM model. Among all UQ methods, the positive and
negative pairs in Dgr is kept the same, while only the
extracted SDE S(7) changes correspondingly. To perform a

Table 6 Data enrich performance in comparison to baseline data augmentation methods in ER. All EM model are backboned with RoBERTa for fair

comparison
Datasets FUSER + Unicorn DK + DITTO Summarize+ DITTO InvDA+ Rotom PTuning+ PromptEM

P R F P R F P R F P R F P R F
CO 9341 7787 8556 92.00 13.18 24.12 7388 3523 47.70 4170 3.60 6.60 28.79 2.62 4.81
SW 92.57 6255 6583 1143 100.00 20.51 11.43 100.00 20.51 34.60 850 13.70 15.70 46.90 23.60
SC 90.75 66.14 76.52 13.85 100.00 24.34 13.85 100.00 2434 7420 2090 32.60 40.80 29.00 33.90

Mengyi YAN et al.

fair comparison, all baseline UQ methods are conducted with
framework Im-polygraph [82], with the same LLM G as
FUSER.

First, we report the UQ efficiency comparison as presented
in Table 8, which details the average computational cost for
each tuple on single A800 GPU. As discussed in Section 5.5,
FUSER has successfully disentangled the LLM generation,
logits computation, and the semantic relevance calculation
procedures. For each of these procedures, FUSER employs a
more efficient implementation method. Specifically, vLLM
[79] is used for LLM generation and FlagEmbedding [87] for
calculating semantic relevance in batch. As a result, FUSER
achieves a significant speedup, approximately 10 times faster
than the baseline methods, with the capability to generate up
to 1024 tokens per query on single GPU. Moreover, FUSER
can effectively scale up through model parallelism. For
example, FUSER can be deployed on multiple GPUs to
accelerate both the generation and the similarity relevance
calculation procedure.

Subsequently, we discuss the effectiveness of UQ as
illustrated in Table 7. It is evident that FUSER also excels in
EM tasks. This success is attributable to the pairwise
enrichment strategy employed by FUSER, which allows LLM
to comprehend a wider range of contextual information.
Additionally, FUSER’s two-tier UQ solution effectively
manages the quality of the generated content. These results
demonstrate that FUSER strikes a balance between
enrichment diversity and credibility, without significantly
increasing computational overhead for UQ estimation.

7.5 Ablation study
In this section, we apply ablation study to evaluate the
effectiveness of each components in FUSER. The result is

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 15

reported in Table 9.

For FUSER w/o Enrichment, it means directly use the ULE
text to construct Dgr for training EM model; FUSER w/o
UQ means randomly select attributes within S; to construct
training set; FUSER w/o LLM means replacing LLM-based
EM models to PLM-based Unicorn, while maintain Dggr
generated with FUSER unchanged. FUSER w/o pseudo-label
means removing the hard negative sampling process in
Section 6.1, only train the model with the initial few-shot
positive samples in Dgr. We conduct the ablation study on 4
datasets, CO/SW/AB/WS.

First of all, we can see SDE in FUSER is most important,
especially for LLM based EM methods. As discussed in
Section 3.3, although LLM can takes the long text as input, it
may “lost in the middle” [12] and pay attention to the wrong
part. So FUSER w/o Enrichment suffers a worse performance
compare to baseline Ditto with summarize.

FUSER w/o UQ also has an average of over 5%
performance drop. Such reasons lies in hallucination issue for
LLM, where LLM may generate factual error or irrelevant
information. Although FUSER leverages SDE and domain
knowledge guidance to constrain such issue, such
hallucination still exists. We claim our two-tier UQ is a valid
solution without much additional resource cost.

FUSER w/o LLM also has a significantly performance drop.
Such phenomenon highlights the advantage of LLMs in
understanding natural guidance g and related demonstration,
mitigating the overfitting and unbalanced issue in few-shot
learning. Nonetheless, we also claim that FUSER enhances
data quality at the data level, and can be integrated with
various existing EM methods with flexibility.

FUSER w/o pseudo-label also has a siginficant

Table 7 Uncertainty Qualification (UQ) performance in comparison to baseline UQ methods in EM task. We apply Unicorn as the EM method Myt for all

methods

FUSER + Unicorn PE + Unicorn SE+ Unicorn SAR+ Unicorn
Datasets

P R F P R F P R F P R F

AB 86.17 78.64 82.23 83.00 72.45 77.37 77.93 80.58 79.23 76.01 81.55 78.68
SW 92.57 62.55 65.83 56.88 60.66 58.71 48.42 65.40 55.65 51.96 62.55 56.77
SC 90.75 66.14 76.52 73.60 75.57 74.87 79.56 69.25 74.05 83.70 70.98 76.82
Table 8 Computational Cost for UQ of each tuple ¢ on average, and k represents number of generations per entity
Method k Generation/s Logits/s Semantic/s Sum/s
PE [56] 5 1.36 0.08 0 1.42
SE [68] 5 1.36 0.08 0.22 1.66
SAR [69] 5 1.36 0.08 1.88 3.32
FUSER(1-GPU) 3.36 0.114 0.0027 0.013 0.1297
FUSER(2-GPU) 3.36 0.058 0.0027 0.007 0.0684

Table 9 Ablation Study result in EM task. For w/o LLM ablation, we select Unicorn, which achieves the best performance among all non- LLM baselines

CO SW AB WS
Methods
P R F P R F P R F P R F

FUSER 98.52 78.01 87.08 92.85 61.61 74.07 87.44 91.26 89.31 91.55 94.99 93.24
FUSER w/o enrichment 25.84 59.80 36.09 49.41 60.19 54.27 81.18 79.61 80.39 73.77 99.08 84.57
FUSER w/o UQ 99.34 72.21 83.63 78.94 63.98 70.68 81.57 90.29 85.71 77.20 95.58 85.41
FUSER w/o LLM 93.41 77.87 85.56 92.57 62.55 65.83 86.17 78.64 82.23 88.06 80.47 84.09
FUSER w/o pseudo-label 99.61 45.85 62.79 42.65 77.74 55.07 43.16 96.60 59.67 26.80 8.34 12.73

16

performance drop. Such result demonstrate that LLM requires
diversified training data to achieve comparable results. Even
with correctly enriched data, LLM also tends to overfitting to
biased distributions, and such observation is consistent with
our findings in Section 3.3.

7.6 Analysis for retrieval quality

In this section, we primarily analyze the retrieval quality and
computational efficiency of FUSER, i.e., tacking Needle in
the Haystack issue with limited computational resources.
Specifically, we evaluate whether the method can accurately
locate and extract the correct information from unstructured
long text for use in real-world ER scenarios. Figure 8§ and
Table 10 present the results of these experiments.

To effectively measure the aforementioned metrics, a
critical step is to determine whether the attributes values
extracted by the LLM correspond to the ground truth.
However, such information is often missing in existing ER
benchmark datasets. By querying metadata (Wikidata [91] for
the CO dataset and WDC Product Data [85] for the SW and
SC datasets), and combining manual annotation and
verification, we identified the intersection between the
metadata and the extended schema set Rexiend, denoted as Ry,
to serve as the ground truth for verifying retrieval quality.
Clearly, measuring the coverage of the LLM-generated
structural enrichment results against the ground truth Ry (i.e.,
Retrieval Accuracy in Table 10) provides an effective
evaluation of the model’s performance. In this section we
filter 5,000/1,374/3,292 entities for CO/SW/SC dataset
correspondingly, which can be correctly mapped to metadata.

After obtaining the annotated data, we briefly present the
characteristics of the aforementioned datasets. Figure 8
illustrates the relative position distribution of the ground truth
attributes in long text at their first occurrence, i.e., the position
of the Needle in the Haystack, across three typical ULE

Front. Comput. Sci., 2025, 19(11): 1911376

datasets: CO, SW, and SC. For each dataset, the critical
information for more than half of the entities appears at
30%-70% of the whole context. This demonstrates that
addressing the “lost-in-the-middle” issue of LLMs is a non-
trivial and widespread challenge. Therefore, adopting a text-
chunk-based RAG framework is necessary.

Next, we demonstrate through a set of ablation experiments
how FUSER effectively improves information extraction
accuracy via the RAG framework. In Table 10, FUSER w/o
RAG represents a baseline where LLM directly generates
extended schema and value from long text #;, without the tuple
pair selection, text chunking in Section 4.1, and the
uncertainty qualification in Section 5. This baseline method
significantly reduces the number of queries to the LLM (as
shown by the Query Number row), but notably increases the
query context length (see the Token Length row), making the
extraction accuracy heavily reliant on the LLM’s intrinsic
capabilities. In contrast, FUSER, leveraging the RAG
framework and uncertainty calibration, increases the query
number to some extent but significantly reduces the presence
of extremely long query contexts. All methods are conducted
with the same backbone LLM model Mistral-7B with 2 A800
GPUs.

In Table 10, from the perspective of effectiveness, FUSER
has a significantly higher retrieval accuracy than baseline,
over 12% higher on average, and leads to over 4% higher F1
score in downstream ER tasks. Such improvement indicates
FUSER has a higher retrieval accuracy for both unstructured
and semi-structured entities.

From the perspective of efficiency, FUSER incorporates a
typical RAG framework with a sliding window text chunk
mechanism, resulting in more queries to handle long texts.
However, since FUSER balances the text length distribution
across queries, it effectively avoids the occurrence of
extremely long texts compared to the baseline method, thereby

10000 400
g>, 8000 300
3 6000
g 200
£ 4000

2000 100
0\ o Slo slo QI° slo o slo glo slo sl ‘
QI° Q1° Q\° o0 o0 ol° o0 o0 o0 ol° ol Q
S S Sl odode? <8
(a)
Fig. 8

\e §\m N Q\e Q\e olo Q\e Q\e oo olo Q\Q
S NG o' NV © Vv
\Q. '\q. f@' f\;b. b(3:’. 9;\. 6\. (\b' (o- qﬁ). .

500
400
300
200
100

(b)

Illustration figure for the relative position distribution of the ground truth attributes in long text across three typical ULE datasets: CO,

SW, and SC, i.e., the position of the Needle in the Haystack. The percentage on the x-axis represents the position of the Needle in their first

occurrence. (a) Dataset CO, Ry,

= Company-Name; (b) dataset SW, R, = SKU/Brand; (c) dataset SC, Ry, = SKU

Table 10 Retrieval quality evaluation for EM task. Retrieval accuracy, runtime, query number and token length are evaluated for SDE and UQ process, while

Fl-score is evaluated under downstream EM task with the same setting

co SW SC
Methods FUSER w/o RAG FUSER FUSER w/o RAG FUSER FUSER w/o RAG FUSER
Retrieval accuracy/% 69.09 77.32 39.31 63.42 52.02 58.06
RunTime/s 541 389 (0.71) 58 85 (1.46x) 83 117 (1.41x)
Query number 4681 14039 (3%) 1971 2712 (1.4x) 3287 3660 (1.12)
Token length (avg/max) 2789/8685 595/1283 345/3926 360/1178 244/22504 41213530
Fl1-Score 82.76 87.08 65.83 74.07 76.08 76.42

Mengyi YAN et al.

reducing computational complexity. Additionally, the
similarity-based tuple pair selection enables FUSER to
extensively reuse the query results’ KV Cache, grouping
similar queries for computation to accelerate inference speed.

A typical example is the CO dataset, where FUSER reduces
the average text length by nearly 5 times and the maximum
text length by 7 times compared to the original text. Although
this introduces 2 times more queries, it reversely reduces the
inference time by 30%. On the SC and SW datasets, where
text lengths are relatively short, FUSER effectively handles
extreme cases by chunking the few extremely long texts,
resulting in a retrieval accuracy improvement of 24% and 6%,
respectively, with affordable external computational cost.

We also claim that FUSER has the scalability to apply weak
LLMs with fewer parameters without significant performance
degradation. In Table 11, we compare the retrieval accuracy
and EM performance of FUSER using smaller LLMs, with
parameters ranging from 0.5B to 7B. We observe that,
although smaller LLMs, such as Qwen2.5-0.5B, lead to worse
retrieval quality, they can still extract distinguishable Rextend
from chunked text, leading to a moderate EM performance
drop. As a result, smaller model does not significantly degrade
the overall performance of the framework, demonstrating the
potential for FUSER to be applied under low-resource
conditions.

Regarding the model parameter size of LLMs, we also
observe that for relative simple dataset, e.g., SC, small LLMs
can retrieve high-quality structural enrichment for downstream
ER task. However, in more complex scenarios, e.g.,
multilingual content in dataset SW and excluding irrelevant
webpage content in dataset CO, LLM with larger parameter
size performs consistently better.

7.7 Hyperparameter sensitivity

In this section, we primarily analyze the impact of two key
hyperparameters: 4 and the number of extended attributes
|[Rextendl, as illustrated in Figs. 9 and 10.

Figure 9 demonstrates the effect in EM performance on the
SC dataset as A varies from 0 to 1. According to Eq. (8), a
smaller A tends to favor attribute-level selection, whereas a
larger A leans towards entity-level. Firstly, FUSER is not
particularly sensitive to A, which is reflected in the overall
performance not showing significant fluctuations; secondly,
since the entity-level UQ score is generally estimated based on
the results of both structural similarity and attribute-level UQ,
a bias towards entity-level, i.e., a larger A value, would lead to
better performance, although this disturbance is insignificant.
Therefore, for robustness, in our experiments, we chose
A1=0.8.

Table 11 Retrieval Accuracy and Entity Matching performance of different
LLM parameter size for schema enrichment. We report retrieval accuracy
(Acc) and the F1-score (F1) for EM task

cO SW SC
Models
Acc/% Fl1/% Acc/% F1/% Acc/% F1/%
Qwen2.5-0.5B 53.69 71.59 58.85 57.67 38.51 74.10
Qwen2.5-1.5B 67.90 82.40 60.27 71.79 51.29 75.55
Qwen2.5-3B 78.98 81.96 5495 67.36 4891 7837
Mistral-7B 7732 87.08 63.42 74.07 58.06 76.42

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 17

F1-Score vs. 4
80

F1-Score

72 4

70

0 0.2 04 05 0.6 0.8 1.0

A

Fig.9 Hyperparameter analysis varying A in Eq. (8) for dataset SC

F1-Score vs. A

extend

85

80 1

s 1

F1-Score

70 1

65 1

60 " T T . .
0 1 2 8 4 5 6
extend

Fig. 10 Hyperparameter analysis varying the number of enriched attribute
number |Rextend| for dataset WS

Figure 10 shows the impact of extended attribute number on
the results in WS dataset. It is evident that extended attributes
improve the overall performance by more than 10%. However,
only a limited number of attributes decisively impact the ER
performance, and as |Rextend| increases, LLM tends to generate
null values or irrelevant information, thereby causing a decline
in performance. Hence, in our experiments, we controlled
|Rextend| to 5, consistent with observations from existing ER-
oriented data augmentation works [92].

8 Conclusion

In this paper, we addressed the critical challenges posed by
unstructured, long-text entities (ULE) in ER, such as input
length constraints, the “Needle in the Haystack™ problem, and
insufficient domain knowledge, which hinder the performance
of existing ER methods. To tackle these issues, we introduced
FUSER, a Few-shot Uncertainty-calibrated Structural
information Enrichment framework. FUSER leverages LLMs
to extract and enrich structured data from unstructured entities
and incorporates a two-tier uncertainty qualification module to
enhance the reliability of generated attributes without
additional inference cost. Our experimental results
demonstrate that FUSER not only improves the data quality,
but also maintains high performance in blocking and matching
tasks with minimal labeled data. This work underscores the
importance of SDE in ER, and establishes an efficient LLM-
based methodology for handling few-shot ULE-ER problems
effectively.

18 Front. Comput. Sci., 2025, 19(11): 1911376

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China (Grant No. 62225202), and Longhua
Bureau (Grant No.

Science and Technology Innovation

10162A20220720B12AB12).
Competing interests The authors declare that they have no competing

interests or financial conflicts to disclose.

Appendixes

Prompt template for domain knowledge guidance

In Figs. Al and A2, we provide the prompt guiding LLM to
generate domain knowledge gr. As illistrated, for each query,
we provide per-dataset task description from metadata,
instruction to ask LLM generating multiple guidance as

Instruction for generating domain knowledge gy for dataset CO

(system message) You are an Al assistant that follows instruction extremely well. User will give you a question. Your task is to answer as faithfully
as you can.
(task description) You are an expert in extracting information from dataset Company, which comes from webpage for a certain company. You are
required to extract company name, company type, and short description from unstructured webpage content.
(instruction) Please write 3 guidance as prompts, which aims to help retrieving the above attributes, avoiding to rely on specific examples. The
following is an example of the input webpage text:
(input) Company 1: {’content’: "and the outdoors type private founded 1977 headquarters columbia missouri key people larry potterfield founder
--- the company is headquartered in columbia missouri and sells in the continental united states . the company markets online . contents 1 history
2 modern management practices 3 nra support 4 midwayusa foundation 5 references: - -’
(Output) Here are three guidance prompts for extracting values properly:
Guidance 1: Identifying the Company Name 1. Identifying the Company Name
Look for phrases or sections in the text that explicitly reference the company name. Indicators might include:

e The company’s website URL .

e Phrases like “The company is known as...”, “The name of the company is...”’, or “The business name was changed to...”.

e The first occurrence of a proper noun or acronym consistently used throughout the text.
Guidance 2. Determining the Company Type
Scan for terms describing the business’s ownership or organizational structure. These often follow keywords like:

o “Type” or phrases such as “Privately/Publicly held”.

e Descriptions including “corporation,” “LLC,” “non-profit,” “retailer,” or other business entity terms.
Guidance 3. Extracting the Short Description
Look for concise summaries or introductions that encapsulate what the company does. These are typically found:

o Near the beginning of the content, often within the first few sentences of a paragraph.

e Following phrases like “is a...” or “is known as...”.

e Summarizing its main activities, products, or services.

Fig. A1 Prompts for LLM generating domain knowledge for dataset CO and examples of generation result gt

Instruction for generating domain knowledge gy for dataset SW

(task description) You are an expert in extracting information from dataset semi-text-watch, which comes from webpage for a certain watch in
different languages. You are required to extract title, brand, gender, sku, diameter from unstructured webpage content.
(instruction) Please write 3 guidance as prompts, which aims to help retrieving the above attributes, avoiding to rely on specific examples. The
following is an example of the input webpage text:
(input) Watch 1: {"content’: *Seiko Scuba Divers Automatik Herrenuhrde Seiko Modell SKX007K2 Kollektion: Seiko Divers watch Scuba Diver’s
Automatik Prizises Automatik Uhrwerk 7526 mit 21 Lagersteinen’}
Watch 2: {’content’: > A finely crafted timepiece makes a bold statement of style - - - At Dejaun Jewelers, we are delighted to offer vast collection
of some of the world’s finest luxury watch brands, including Bvlgari. --- We are also honored to be an authorized Bvlgari retailer in Los Angeles.
Bvlgari’s unique timepieces are crafted to last. This Ladies watch with model number BBLP33WGG 12 is part of the unique Bvlgari collection’}
(Output) Here are three guidance prompts for extracting values properly:
Guidance 1. Multilingual Strategy: Focus on proper nouns, common keywords for watch descriptors (e.g., ”Automatik,” ”Watch”), and specific
product identifiers.

o Title: Identify the main descriptive phrase combining brand, model, and key features. Look for prominent headers or bold text.

e Brand: Locate the manufacturer name, often the first word or frequently repeated in the text.
Guidance 2. Extracting Gender, and SKU

o Gender: Look for keywords such as “Men’s,” “Ladies,” or equivalent gender indicators (e.g., “Herrenuhr”).

e SKU: Extract unique alphanumeric product identifiers, often labeled “Model number” or “Modell.”
Guidance 3. Extracting Diameter

o Diameter: Find case size measurements (e.g., “42 mm”), often near keywords like “diameter” or “Gehdusedurchmesser.”

Fig. A2 Prompts for LLM generating domain knowledge for dataset SW and examples of generation result gr

Mengyi YAN et al.

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 19

Table A1 Additional datasets characteristics in our experiments, as supplementary to Table 2

Dataset Domain # All # Match # Query # Token (w/o FUSER) # Token (FUSER) IR| |Rextend!
Company(CO) [38] Company 112,632 28,200 66,550 2789/8685 595/1283 1/1 5/5
Semi-Text-W(SW) [7] Watch 9,234 1,089 6,144 345/3926 360/1178 1.65/1 5/5
Semi-Text-C(SC) [7] Electronic 20,897 2,940 7,936 244/22504 412/3530 1.62/1 5/5
WDC-AIll-Small(WS) [85] Product 13,436 3,516 16,686 239/789 239/789 1/1 5/5
Abt-Buy(AB) [38] Product 9,575 1,028 11,269 302/493 302/493 11 5/5
Walmart-Amazon(WA) [38] Product 10,242 962 20,534 288/467 288/467 11 5/5

injected domain knowledge for the next structural data
enrichment stage, and input for randomly-selected entity
examples in the dataset. Due to space limitations, we only
present the prompts for representative datasets. In the input,
we display only a portion of the entity example content,
with indicating omitted content. Output shows the
example outputs for gt, denoted as guidance.

After collecting multiple guidance from LLM, we select the
top-3 guidance, acting as the global injected domain
knowledge to conduct structural data enrichment process in
Section 4.3. The selection criteria is the uncertainty score
corresponding to each generated guidance, and the calculation
method is presented at the end of Section 5.3.

Briefly speaking, the selection pipeline is highly similar to
the proposed two-tier uncertainty qualification method in
Section 5, in which we treat each individual generated
guidance as attribute-level, and the whole generation output
for each query as entity-level.

Dataset characteristics

In Table Al below, we provide additional datasets
characteristics in our experiments, as supplementary to
Table 2. # means Number of. # Query means query number
for LLM over all dataset for FUSER after text chunk. We
provide average(avg) and maximum(max) of token length for
each query after text chunk. We also report existing attribute
number |R| for 7},T, of each dataset, and enriched schema
number |Rextend| by FUSER. It is worth noting that [R| =1 for
unstructured data, and we report the average number of
attributes for semi-structured data, as different entities may
have different attributes.

References

1. Liu Y. RoBERTa: a robustly optimized BERT pretraining approach.
2019, arXiv preprint arXiv: 1907.11692

2. LiY,LiJ, Suhara Y, Doan A, Tan W C. Deep entity matching with pre-
trained language models. Proceedings of the VLDB Endowment, 2020,
14(1): 50-60

3. Miao Z, Li Y, Wang X. Rotom: a meta-learned data augmentation
framework for entity matching, data cleaning, text classification, and
beyond. In: Proceedings of 2021
Management of Data. 2021, 1303—-1316

4. Wang P, Zeng X, Chen L, Ye F, Mao Y, Zhu J, Gao Y. PromptEM:
prompt-tuning for low-resource generalized entity matching.
Proceedings of the VLDB Endowment, 2022, 16(2): 369—-378

5. Reimers N, Gurevych I. Sentence-BERT: sentence embeddings using
Siamese BERT-networks. In: Proceedings of 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing. 2019,
3982-3992

6. Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G, Deep R,

International Conference on

20.

21.

22.

Arcaute E, Raghavendra V. Deep learning for entity matching: a design
space exploration. In: Proceedings of 2018 International Conference on
Management of Data. 2018, 19-34

Wang J, Li Y, Hirota W. Machamp: a generalized entity matching
benchmark. In: Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 2021, 4633—4642
Chaudhury S, Dan S, Das P, Kollias G, Nelson E. Needle in the
haystack for memory based large language models. 2024, arXiv preprint
arXiv: 2407.01437

Tang J, Dou W, Shen D, Nie T, Kou Y. Towards long-text entity
resolution with chain-of-thought knowledge augmentation from large
language models. In: Proceedings of the 29th International Conference
on Database Systems for Advanced Applications. 2024, 322-336

Wu R, Chaba S, Sawlani S, Chu X, Thirumuruganathan S. ZeroER:
entity resolution using zero labeled examples. In: Proceedings of 2020
ACM SIGMOD International Conference on Management of Data.
2020, 11491164

He J, Pan K, Dong X, Song Z, LiuYiBo L, Qianguosun Q, Liang Y,
Wang H, Zhang E, Zhang J. Never lost in the middle: mastering long-
context question answering with position-agnostic decompositional
training. In: Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics. 2024, 13628—13642

Liu N F, Lin K, Hewitt J, Paranjape A, Bevilacqua M, Petroni F, Liang
P. Lost in the middle: how language models use long contexts.
Transactions of the Association for Computational Linguistics, 2024,
12: 157-173

Xu D, Chen W, Peng W, Zhang C, Xu T, Zhao X, Wu X, Zheng Y,
Wang Y, Chen E. Large language models for generative information
extraction: a survey. Frontiers of Computer Science, 2024, 18(6):
186357

Singh I S, Aggarwal R, Allahverdiyev I, Taha M, Akalin A, Zhu K,
O’Brien S. ChunkRAG: novel LLM-chunk filtering method for rag
systems. 2024, arXiv preprint arXiv: 2410.19572

Zhang H, Dong Y, Xiao C, Oyamada M. Jellyfish: instruction-tuning
local large language models for data preprocessing. In: Proceedings of
2024 Conference on Empirical Methods in Natural
Processing. 2024, 8754—8782

Narayan A, Chami I, Orr L, Ré C. Can foundation models wrangle your
data? Proceedings of the VLDB Endowment, 2022, 16(4): 738—746
Cardie C. Empirical methods in information extraction. AI Magazine,
1997, 18(4): 65-79

Wu H, Yuan Y, Mikaelyan L, Meulemans A, Liu X, Hensman J, Mitra
B. Structured entity extraction using large language models. 2024, arXiv
preprint arXiv: 2402.04437

Yang Y, Huang P, Cao J, Li J, Lin Y, Ma F. A prompt-based approach
to adversarial example generation and robustness enhancement.
Frontiers of Computer Science, 2024, 18(4): 184318

Wu Y, Yang X. A glance at in-context learning. Frontiers of Computer
Science, 2024, 18(5): 185347

Huang L, Yu W, Ma W, Zhong W, Feng Z, Wang H, Chen Q, Peng W,
Feng X, Qin B, Liu T. A survey on hallucination in large language
models: principles, taxonomy, challenges, and open questions. ACM

Language

Transactions on Information Systems, 2025, 43(2): 42
Papadakis G, Skoutas D, Thanos E, Palpanas T. Blocking and filtering

20

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Front. Comput. Sci., 2025, 19(11): 1911376

techniques for entity resolution: a survey. ACM Computing Surveys,
2021, 53(2): 31

Fan W, Jia X, Li J, Ma S. Reasoning about record matching rules.
Proceedings of the VLDB Endowment, 2009, 2(1): 407418

Kejriwal M, Miranker D P. A DNF blocking scheme learner for
heterogeneous datasets. 2015, arXiv preprint arXiv: 1501.01694
Papadakis G, Koutrika G, Palpanas T, Nejdl W. Meta-blocking: taking
entity resolutionto the next level. IEEE Transactions on Knowledge and
Data Engineering, 2014, 26(8): 1946—1960

Singh R, Meduri V V, Elmagarmid A, Madden S, Papotti P, Quiané-
Ruiz J A, Solar-Lezama A, Tang N. Synthesizing entity matching rules
by examples. Proceedings of the VLDB Endowment, 2017, 11(2):
189-202

Paulsen D, Govind Y, Doan A. Sparkly: a simple yet surprisingly strong
TF/IDF blocker for entity matching. Proceedings of the VLDB
Endowment, 2023, 16(6): 1507-1519

Paul Suganthan G C, Ardalan A, Doan A, Akella A. Smurf: self-service
string matching using random forests. Proceedings of the VLDB
Endowment, 2018, 12(3): 278—291

Efthymiou V, Papadakis G, Papastefanatos G, Stefanidis K, Palpanas T.
Parallel meta-blocking: realizing scalable entity resolution over large,
heterogeneous data. In: Proceedings of 2015 IEEE International
Conference on Big Data (Big Data). 2015, 411-420

Thirumuruganathan S, Li H, Tang N, Ouzzani M, Govind Y, Paulsen D,
Fung G, Doan A. Deep learning for blocking in entity matching: a
design space exploration. Proceedings of the VLDB Endowment, 2021,
14(11): 2459-2472

Wang R, Li Y, Wang J. Sudowoodo: contrastive self-supervised
learning for multi-purpose data integration and preparation. In:
Proceedings of the 39th IEEE International Conference on Data
Engineering. 2023, 1502—1515

Brinkmann A, Shraga R, Bizer C. SC-block: supervised contrastive
blocking within entity resolution pipelines. In: Proceedings of the 21st
International Conference on the Semantic Web. 2024, 121-142

Wu S, Wu Q, Dong H, Hua W, Zhou X. Blocker and matcher can
mutually benefit: a co-learning framework for low-resource entity
resolution. Proceedings of the VLDB Endowment, 2023, 17(3):
292-304

Wang T, Lin H, Han X, Chen X, Cao B, Sun L. Towards universal
dense blocking for entity resolution. 2024, arXiv preprint arXiv:
2404.14831

Guo S, Dong X L, Srivastava D, Zajac R. Record linkage with
uniqueness constraints and erroneous values. Proceedings of the VLDB
Endowment, 2010, 3(1-2): 417-428

Fan W, Gao H, Jia X, Li J, Ma S. Dynamic constraints for record
matching. The VLDB Journal, 2011, 20(4): 495-520

Whang S E, Garcia-Molina H. Joint entity resolution on multiple
datasets. The VLDB Journal, 2013, 22(6): 773—795

Konda P, Das S, Paul Suganthan G C, Doan A, Ardalan A, Ballard J R,
Li H, Panahi F, Zhang H, Naughton J, Prasad S, Krishnan G, Deep R,
Raghavendra V. Magellan: toward building entity matching
management systems. Proceedings of the VLDB Endowment, 2016,
9(12): 1197-1208

Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M, Tang N.
Distributed representations of tuples for entity resolution. Proceedings
of the VLDB Endowment, 2018, 11(11): 1454—1467

Zhao C, He Y. Auto-EM: end-to-end fuzzy entity-matching using pre-
trained deep models and transfer learning. In: Proceedings of the World
Wide Web Conference. 2019, 2413-2424

Li B, Wang W, Sun Y, Zhang L, Ali M A, Wang Y. GraphER: token-
centric entity resolution with graph convolutional neural networks. In:
Proceedings of the 34th AAAI Conference on Artificial Intelligence.
2020, 8172-8179

Fu C, Han X, Sun L, Chen B, Zhang W, Wu S, Kong H. End-to-end
multi-perspective matching for entity resolution. In: Proceedings of the
28th International Joint Conference on Artificial Intelligence. 2019,

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

4961-4967

Tang J, Song R, Huang Y, Gao S, Yu Z. Semantic-aware entity
alignment for low resource language knowledge graph. Frontiers of
Computer Science, 2024, 18(4): 184319

Zeng X, Wang P, Mao Y, Chen L, Liu X, Gao Y. MultiEM: efficient
and effective unsupervised multi-table entity matching. In: Proceedings
of the 40th IEEE International Conference on Data Engineering. 2024,
3421-3434

Kirielle N, Christen P, Ranbaduge T. TransER: homogeneous transfer
learning for entity resolution. In: Proceedings of the 25th International
Conference on Extending Database Technology. 2022, 118—130

Tu J, Han X, Fan J, Tang N, Chai C, Li G, Du X. DADER: hands-off
entity resolution with domain adaptation. Proceedings of the VLDB
Endowment, 2022, 15(12): 3666—3669

Sun C, Xu Y, Shen D, Nie T. Matching feature separation network for
domain adaptation in entity matching. In: Proceedings of the ACM Web
Conference 2024. 2024, 1975-1985

Loster M, Koumarelas I, Naumann F. Knowledge transfer for entity
resolution with Siamese neural networks. Journal of Data and
Information Quality (JDIQ), 2021, 13(1): 2

Fan J, Tu J, Li G, Wang P, Du X, Jia X, Gao S, Tang N. Unicorn: a
unified multi-tasking matching model. ACM SIGMOD Record, 2024,
53(1): 44-53

Li B, Miao Y, Wang Y, Sun Y, Wang W. Improving the efficiency and
effectiveness for BERT-based entity resolution. In: Proceedings of the
35th AAAI Conference on Artificial Intelligence. 2021, 13226—13233
Li P, He Y, Yashar D, Cui W, Ge S, Zhang H, Rifinski Fainman D,
Zhang D, Chaudhuri S. Table-GPT: table fine-tuned GPT for diverse
table tasks. Proceedings of the ACM on Management of Data, 2024,
2(3): 176

Wang T, Chen X, Lin H, Chen X, Han X, Sun L, Wang H, Zeng Z.
Match, compare, or select? An investigation of large language models
for entity matching. In: Proceedings of the 31st International
Conference on Computational Linguistics. 2025, 96—109

Li H, Feng L, Li S, Hao F, Zhang C J, Song Y, Chen L. On leveraging
large language models for enhancing entity resolution: a cost-efficient
approach. 2024, arXiv preprint arXiv: 2401.03426

Gawlikowski J, Tassi C R N, Ali M, Lee J, Humt M, Feng J, Kruspe A,
Triebel R, Jung P, Roscher R, Shahzad M, Yang W, Bamler R, Zhu X
X. A survey of uncertainty in deep neural networks. Artificial
Intelligence Review, 2023, 56(S1): 1513—1589

Kendall A, Gal Y. What uncertainties do we need in Bayesian deep
learning for computer vision? In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. 2017,
5580-5590

Kadavath S, Conerly T, Askell A, Henighan T, Drain D, et al. Language
models (mostly) know what they know. 2022, arXiv preprint arXiv:
2207.05221

Zhao X, Chen F, Hu S, Cho J H. Uncertainty aware semi-supervised
learning on graph data. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems. 2020, 1076

Liu Q, Zhang Q, Zhao F, Wang G. Uncertain knowledge graph
embedding: an effective method combining multi-relation and multi-
path. Frontiers of Computer Science, 2024, 18(3): 183311

Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J D, et al. Language
models are few-shot learners. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems. 2020, 159
Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M A, Lacroix T,
Roziere B, Goyal N, Hambro E, Azhar F, Rodriguez A, Joulin A, Grave
E, Lample G. LLaMA: open and efficient foundation language models.
2023, arXiv preprint arXiv: 2302.13971

Jiang A Q, Sablayrolles A, Mensch A, Bamford C, Chaplot D S, de las
Casas D, Bressand F, Lengyel G, Lample G, Saulnier L, Lavaud L R,
Lachaux M A, Stock P, Scao T L, Lavril T, Wang T, Lacroix T, Sayed
W E. Mistral 7B. 2023, arXiv preprint arXiv: 2310.06825

Xiao Y, Liang P P, Bhatt U, Neiswanger W, Salakhutdinov R, Morency

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.

79.

80.

Mengyi YAN et al.

L P. Uncertainty quantification with pre-trained language models: a
large-scale empirical analysis. In: Proceedings of Findings of the
Association for Computational Linguistics: EMNLP 2022. 2022,
72737284

Lin S, Hilton J, Evans O. Teaching models to express their uncertainty
in words. Transactions on Machine Learning Research, 2022

Manakul P, Liusie A, Gales M. SelfCheckGPT: zero-resource black-box
hallucination detection for generative large language models. In:
Proceedings of 2023 Conference on Empirical Methods in Natural
Language Processing. 2023, 9004-9017

Malinin A, Gales M. Uncertainty estimation in autoregressive structured
prediction. In: Proceedings of the 9th International Conference on
Learning Representations. 2021

Li M, Shi X, Qiao C, Huang X, Wang W, Wan Y, Zhang T, Jin H.
E2CNN: entity-type-enriched cascaded neural network for Chinese
financial relation extraction. Frontiers of Computer Science, 2025,
19(10): 1910352

Huang Y, Song J, Wang Z, Zhao S, Chen H, Juefei-Xu F, Ma L. Look
before you leap: an exploratory study of uncertainty analysis for large
language models. IEEE Transactions on Software Engineering, 2025,
51(2): 413429

Kuhn L, Gal Y, Farquhar S. Semantic uncertainty: linguistic invariances
in natural

for uncertainty estimation language generation. In:

Proceedings of the 11th International
Representations. 2023
Duan J, Cheng H, Wang S, Zavalny A, Wang C, Xu R, Kailkhura B, Xu

K. Shifting attention to relevance: towards the predictive uncertainty

Conference on Learning

quantification of free-form large language models. In: Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics. 2024, 5050—5063

Yin Z, Sun Q, Guo Q, Wu J, Qiu X, Huang X J. Do large language
models know what they don’t know? In: Proceedings of Findings of the
Association for Computational Linguistics: ACL 2023. 2023,
8653-8665

Sui Y, Zhou M, Zhou M, Han S, Zhang D. Table meets LLM: can large
language models understand structured table data? A benchmark and
empirical study. In: Proceedings of the 17th ACM International
Conference on Web Search and Data Mining. 2024, 645-654

Krell M M, Kosec M, Perez S P, Fitzgibbon A. Efficient sequence
packing without cross-contamination: accelerating large language
models without impacting performance. 2022, arXiv preprint arXiv:
2107.02027

Luo K, Liu Z, Xiao S, Liu K. BGE landmark embedding: a chunking-
free embedding method for retrieval augmented long-context large
language models. 2024, arXiv preprint arXiv: 2402.11573

Liu J. Llamaindex. See GitHub repository (Llamalndex) website, 2023
Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for
contrastive learning of visual representations. In: Proceedings of the
37th International Conference on Machine Learning. 2020, 1597-1607
Kornbrot D. Point biserial correlation. In: Wiley StatsRef: Statistics
Reference Online. New York: John Wiley & Sons, 2014

Brinkmann A, Shraga R, Bizer C. ExtractGPT: exploring the potential
of large language models for product attribute value extraction. In:
Proceedings of the 26th International Conference on Information
Integration and Web Intelligence. 2025, 38—52

Dong Y, Ruan C F, Cai Y, Lai R, Xu Z, Zhao Y, Chen T. XGrammar:
flexible and efficient structured generation engine for large language
models. 2024, arXiv preprint arXiv: 2411.15100

Kwon W, Li Z, Zhuang S, Sheng Y, Zheng L, Yu C H, Gonzalez J,
Zhang H, Stoica I. Efficient memory management for large language
model serving with PagedAttention. In: Proceedings of the 29th
Symposium on Operating Systems Principles. 2023, 611-626

Farquhar S, Kossen J, Kuhn L, Gal Y. Detecting hallucinations in large

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Towards uncertainty-calibrated structural data enrichment with LLM for few-shot ER 21

language models using semantic entropy. Nature, 2024, 630(8017):
625-630

Leviathan Y, Kalman M, Matias Y. Fast inference from transformers via
speculative decoding. In: Proceedings of the 40th International
Conference on Machine Learning. 2023, 19274—19286

Fadeeva E, Vashurin R, Tsvigun A, Vazhentsev A, Petrakov S,
Fedyanin K, Vasilev D, Goncharova E, Panchenko A, Panov M,
Baldwin T, Shelmanov A. LM-polygraph: uncertainty estimation for
language models. In: Proceedings of 2023 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
2023, 446—461

Zhang J, Fan R, Tao H, Jiang J, Hou C. Constrained clustering with
weak label prior. Frontiers of Computer Science, 2024, 18(3): 183338
Zheng Y, Zhang R, Zhang J, Ye Y, Luo Z, Feng Z, Ma Y.
Llamafactory: unified efficient fine-tuning of 100+ language models. In:
Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 3: System Demonstrations). 2024,
400-410

Primpeli A, Peeters R, Bizer C. The WDC training dataset and gold
standard for large-scale product matching. In: Proceedings of the 2019
World Wide Web Conference. 2019, 381-386

He P, Liu X, Gao J, Chen W. DeBERTa: decoding-enhanced BERT
with disentangled attention. In: Proceedings of the 9th International
Conference on Learning Representations. 2021

Zhang P, Xiao S, Liu Z, Dou Z, Nie J Y. Retrieve anything to augment
large language models. 2023, arXiv preprint arXiv: 2310.07554

Wang X, Wang Z, Gao X, Zhang F, Wu 'Y, Xu Z, Shi T, Wang Z, Li S,
Qian Q, Yin R, Lv C, Zheng X, Huang X. Searching for best practices
in retrieval-augmented generation. In: Proceedings of 2024 Conference
on Empirical Methods
1771617736

Honnibal M, Montani I, Van Landeghem S, Boyd A. spaCy: industrial-
strength natural language processing in python. See github.com/explosion/
spaCy website, 2020

Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y,
Li W, Liu P J. Exploring the limits of transfer learning with a unified

in Natural Language Processing. 2024,

text-to-text transformer. The Journal of Machine Learning Research,
2020, 21(1): 140

VrandeGi¢ D, Krotzsch M. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, 2014, 57(10): 78—85
Yan M, Fan W, Wang Y, Xie M. Enriching relations with additional
attributes for ER. Proceedings of the VLDB Endowment, 2024, 17(11):
3109-3123

Mengyi YAN is currently working toward his PhD
degree in the School of Computer Science and

= o8 Engineering at Beihang University, China. His
=y research interests include large language models,

database, and data mining.

Yaoshu WANG received the PhD degree in
computer science from the University of New
South Wales, Australia in 2018. He is currently a
senior researcher in Shenzhen Institute of
Computing Sciences, China. His research interests
include data quality, machine learning, and big

data.

22

Front. Comput. Sci., 2025, 19(11): 1911376

Xiaohan JIANG is currently working toward her
PhD degree at the School of Computer Science
and Engineering, Beihang University, China. Her
research interests include natural language
processing, time series analysis, and data mining.

Haoyi ZHOU received the PhD degree from the
School of Computer Science and Engineering,
Beihang University, China in 2021. He is
currently an associate professor with the School of
Software, Beihang University, China. His research
interests include machine learning and time-series
analysis.

Jianxin LI is currently a professor with the School
of Computer Science and Engineering, Beihang
University, China, and a senior researcher with
Beijing Advanced Innovation Center for Big Data
and Brain Computing. His current research
interests consist of social networks, machine
learning, big data, and trustworthy computing.

