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Abstract—Entity blocking, which aims to find all potentially
matched tuple pairs in large-scale data, is an important step for
entity resolution. It is non-trivial because it needs to consider
both of the effectiveness and efficiency, and the emergence of
representation learning has made it possible. Although there exist
existing representation learning models for entity blocking, all of
them require self-curated training instances in the target domain,
which limits their capabilities for unseen data. In this paper,
we propose UDAEB, a framework for Unsupervised Domain
Adaptation for Entity Blocking that is fine-tuned between the
source and target domains using contrastive learning by leverag-
ing the capabilities of LLMs. UDAEB first adopts the adversarial
learning strategy to reduce the distribution discrepency between
source and target domains as the warmup step. Based on the
initially learned representations, UDAEB involves pre-trained
LLMs to enrich robust and distinguishable attributes for source
and target domains. Furthermore, we propose an iterative step to
fine-tune entity blocking model by selecting high-quality training
instances with pseudo-labels by leveraging LLMs. Finally we
conduct comprehensive experiments to show UDAEB has the
superior performance against the state-of-the-art algorithms with
aspects of the pair completeness (PC), pair quality (PQ) and the
candidate set size ratio (CSSR).

Index Terms—Entity Blocking, Unsupervised Domain Adapta-
tion, Large Language Models

I. INTRODUCTION

Entity resolution (ER), also called de-duplication and record
linkage, aims to retrieve and identify all matched tuple pairs
in collections of tuples. It is an important component for
data cleaning, information integration, and data processing
pipelines for training machine learning models. When encoun-
tering large number of tuples, entity resolution often adopts
entity blocking as the filtering step to filter unmatched tuple
pairs so that the Cartesian product operation can be avoided.
Thus, entity blocking, as a vital step of ER, needs to achieve
(1) fast speed so that candidate tuple pairs can be efficiently
retrieved; (2) high recall so that no matched pairs are missed;
and (3) high precision so that the following entity matching
step does not need to evaluate a large number of candidates.

With the emergence of representation learning based on
neural networks, a promising research direction for entity
blocking has been developed. All tuples are transformed into
dense embeddings, and K nearest neighbor search is executed
to retrieve the top-K most similar ones for each tuple, where
K is a pre-defined hyper-parameter.
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Due to the insufficient manual annotations, recent studies
have shown that self-supervised learning has significantly
improved entity blocking. Most existing entity blocking mod-
els, such as DeepBlocker [1] and Sudowoodo [2], automat-
ically generate training tuple pairs using data augmentation
techniques, where positive tuples are generated from one
tuple by randomly inserting, deleting, or replacing its tokens.
However, none of the existing works consider using data from
other domains to enhance their performance, i.e., unsupervised
domain adaptation. Although there are works like DADER [3]
and MFSN [4] that propose cross-domain entity resolution,
they all focus on entity matching, a binary classification task,
which is different from entity blocking, i.e., a ranking task.
Furthermore, as Large Language Models (LLMs) have recently
shown significant performance improvements, entity matching
based on LLMs, such as JellyFish [S] and MELD [6], have
been proposed. However, there are no works that leverage the
background knowledge of LLMs to enhance entity blocking.

In this paper, we design an unsupervised domain adaptation
framework for entity blocking (UDAEB), leveraging the capa-
bilities of LLMs. We address this by proposing a framework
consisting of three steps: warmup, enrichment, and iteration.
The warmup step aims to initialize the parameters of the
representation model by transforming the embeddings of two
tuples into similarity space and aligning their similarity vectors
between the source and target domains. Next, we leverage
the prior knowledge from LLMs to separately enrich tuples
from the source and target domains, reducing both the source
empirical risk and the distribution discrepancy between the
source and target domains. Once tuples have been enriched
with more robust and distinguishable features and the repre-
sentation model is well-initialized, we execute the iteration
step. This step gradually fine-tunes the representation model
using both self-supervised and supervised contrastive learning
by selecting and generating high-quality training instances
with pseudo-labels from datasets and LLMs.

Comprehensive experiments have been conducted on bench-
mark datasets, and the experimental results show the effective-
ness and efficiency of UDAEB, verifying that leveraging the
capabilities of LLMs and designing the proposed framework
to boost the performance of entity blocking is a promising
direction. Specifically, UDAEB outperforms the state-of-the-
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art entity blocking systems using metrics of PC, PQ and CSSR.

Contribution. The main contributions are summarized as
follows.

1) We propose a framework called Unsupervised Domain
Adaptation Entity Blocking that integrates implicit fea-
ture alignment across domains, enrichment by LLMs and
contrastive learning strategy.

Because of no training tuple pairs in T, we propose a
training data selection strategy that automatically selects
high-quality training data for model fine-tuning.

We design a schema enrichment mechanism to enrich
optimized sets of features for both source and target
domain such that they could promote the process of
feature alignments.

We propose an iterative fine-tuning approach based on
self-supervised and supervised contrastive learning that
leverages the capabilities of LLMs and data selection.
We conduct comprehensive experiments to verify that
UDAEB outperforms the existing baselines in several
benchmark datasets.

2)

3)

4)

5)

II. PROBLEM DEFINITION

We explore unsupervised domain adaptation for entity
blocking, leveraging sufficient labeled training data in the
source domain to transfer domain-invariant features to the
target domain that only has unlabeled training data. Let the
source and target domains be denoted by S and T, respectively.
Each domain has left and right tables of tuples, denoted as

= {as}\R 'l and RS = {bs}\R | based on attributes As for

the source domain, and R = {aT}m’ and R} = {bT}‘R !
based on attributes At for the target domain. Here, a$ and b3
(resp. a and bT) represent Ag-attribute (resp. Aq- attrlbute)
tuples in S (resp. T).

Additionally, we have a set DS of labeled training data
from S, and DT of unlabeled training data from T, where

D® DT|
® = {(@?,b7, 9712, and DT = {(a] b))}, . Here
y? € {False, True} is the label for the i-th pair (a, bf) Using

these above notations, we define our problem.

Unsupervised domain adaptation for entity blocking. Given
the tables of the source domain (R?,R?), the tables of
the target domain (R],R), the set DS of labeled training
data from S, and D7 of unlabeled training data from T,
the objective of unsupervised domain adaptation for entity
blocking is to find all potentially matching tuple pairs in
R} x R efficiently.

Solving the entity blocking task is non-trivial due to several
challenges as follows. (a) Compared with cross-domain entity
matching, e.g.,DADER [3], that predicts whether two tuples
are matched or not, cross-domain entity blocking aims to
efficiently retrieve all potentially matching tuple pairs from
large-scale data with high precision and recall; (b) It is
challenging to achieve knowledge transfer between domains
while maintaining fast running times. In Figure 1, we propose
a framework of entity blocking, called UDAEB to solve these
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issues, which consists of three components, feature alignment
with adversarial learning, data enrichment with LLMs and
iterative training using contrastive learning.

Representation learning. We adopt the SentenceBert
model [7] as the backbone model for M such that
each tuple ¢ is transformed to its high-dimensional em-
bedding vector. Specifically, we serialize ¢ to a sequence
as serial(t) = [COL]A;[VALJ¢[A4]...[COL]A,,[VAL]t[A],
where Ay,..., A, are m attributes of ¢ and [COL] and [VAL]
are special tokens [8]. Then we fed serial(¢) into M and return
its embedding, s.t., emb; = M (serial(t)).

Given the source labeled training data DS, we trans-
form it into a set CL® of triplets, s.z. cL®
{(a, Pa, Na)|Va, (a, b1, True) € D3, (a, by, False) € DS, b €
Pa,by € Ny}, where P, and N, are the sets of tuples that
match(w.r.t. positive) and mismatch(w.r.t. negative) with a,
respectively. After obtaining CL® by aggregating all tuples
like a, we fine-tune M using the contrastive learning loss
function [9] for each tuple a.

III. DATA ENRICHMENT WITH LLMS

To generate robust representations of the source and target
domains, we enrich tuples with LLMs that could generate
more structural data, containing explicit domain-invariant fea-
tures. Given the basic attribute set Ag of DS and At of DT,
we aim to extend these to enriched attribute sets Bs and Br,
respectively.

Consider a tuple pair (a y°) € D°. We manually create
an enrichment instruction for a large language model (LLM)
to generate a set of possible enriched attributes. Subsequently,
we scan all tuple pairs in DS, counting the frequency of
each generated attribute. Attributes with frequencies below a
predefined threshold are then filtered out. Finally, we collect a
full set B2" of attributes with high frequencies to enrich. This
process is 31milar1y applied to generate enriched attributes B3
in the target domain. After that, we manually select subsets
Bs and Bt from Bg” and B%", respectively.

Given a set of attributes B € {Bs, B}, we further hand-
craft an instruction for LLMs to impute values for B in tuple
pairs (a,b). This transforms tuples a and b from A-attribute
tuples to (AU B)-attribute tuples. We denote the enriched tuple
pair (a,b) with B attributes as (a,b) 5 and the enriched set as
(D) g, where A € {As, At}.

S 1S
7bu

IV. THE FRAMEWORK OF CROSS-DOMAIN ENTITY
BLOCKING

In this section, we design a framework for cross-domain
entity blocking by leveraging the capabilities of LLMs and
contrastive learning. This framework integrates data enrich-
ment, adversarial domain adaptation, and data selection.

A. Cross-domain Training Strategy

To further adapt M to the target domain, we employ a two-
step contrastive learning strategy: self-supervised contrastive
learning leveraging LLMs and supervised contrastive learning
based on pseudo-labeled training instances.
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Fig. 1: The Framework of UDAEB

(1) Self-supervised contrastive learning. Because the target
training data DT has no labels, we combine data augmentation
and enrichment by LLMs.

Data augmentation. We extract all single tuples t € R} UR]
and adopt L, data augmentation strategies [10], i.e., random
insertion, deletion, and replacement of tokens in ¢, to generate
Laug augmented tuples as the positive set P;"€ of .

Data enrichment by LLMs. To increase the robustness of tar-
get tuple representations, we further utilize the powerfulness
of LLMs. Recall that B3 is the set of all enriched attributes
in T, and we randomly sample Ly subsets from B3 to
generate a new set S of size L, such that ¢[C] is the
record of attributes C € S and C C B-?-”. Thus we have
t[ATUC;] and t[ATUC;] are the same entity for C;,C; € S.
Finally we get a new positive set PF*M of ¢ such that
PHM = [4{AT U O)|C € S}.

Self-supervised learning. Now we could finally integrate the
effectiveness of the above two techniques such that P
PHM x P28 In detail, for each enriched tuple ¢’ € PrM, we
generate L,,; augmented tuples t/, ... ,t’Laug as the positive
ones. Finally, we generate the positive set P, of ¢ with size
|Pt| = Liim - Laug, and adopt the hard negative sampling
methods to find the negative set N;. Finally (¢, P;, N}) is the
triplet of ¢ for self-supervised contrastive learning.

(2) Supervised contrastive learning. We automatically select
high-quality training triplets from R] x R with pseudo-
labels. Unlike existing pseudo-label-based ER methods, such
as PromptEM [11], we primarily focus on generating the
pseudo positive set of tuples instead of directly predicting
the pseudo-labels of tuple pairs, thus preventing noises from
the training instances. To achieve this, we first scan each
tuple ¢ € R] and retrieve its top-K most similar tuples in
RI, denoting the top-K set as KNN;. Next, following [12],
we randomly sample a high-quality coreset with probabili-
ties, i.e, KNN = {(¢,5)]s € KNN;,t € R]}. For each
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tuple pair (¢,s) € KNN, we assign a probability p to it.
Their embeddings are emb; and emb,, and we compute

o exp[m-(emb,,emb,)] . .
p= S w0y crom XPL- (emba,emby]] More specifically, we assign

probabilities for all tuple pairs in KNN and randomly sample
a subset CT with a preset sampling ratio. Here we set the ratio
as +.

Notice that we could simply select the top-1 similar tuple
pairs in KNN instead of sampling a coreset with probabilities.
However, as discussed in [13], deterministic selection with
the highest similarities often results in inferior performance.
Random sampling with probabilities is beneficial because
(1) it involves some exploration on samples with the same
probabilities, and (2) a bit of randomness in the training data
is essential to achieve a high-quality solution for non-convex
models such as DNNs [13].

B. The Cross-domain Framework

By integrating the enrichment by LLMs, adversarial learn-
ing strategy and contrastive learning, we design a cross-domain
entity blocking framework to gradually fine-tune M to achieve
good performance.

With inputs of the labeled source training tuple pairs D°
and unlabeled target training tuple pairs DT, the target left and
right tables R/ and R, and a pre-trained LLM, we output the
tuned embedding model M to adapt in the target domain T. In
the beginning we start a simple but effective warmup process
as follows. We first transform DS into the set of triplets cLS
and fine-tune M using the contrastive learning so that M
could be adapted in S. Next a MLP-based discriminator D is
added and we adopt the adversarial learning strategy [14] to
further fine-tune M and D so that similarity representations
of S and T are aligned together.

After the warmup step, we fix parameters of M and D,
and initialize the enrichment step. We first retrieve all enriched
attributes B2" and B3" for the source and target domains by
referencing LLM, respectively. Next we adopt LLM to fill in
values of enriched attributes of all tuples in R and R[. Then
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we select subsets Bs and Bt as the final enriched features for
tuple pairs in S and T. Now we start our iteration step to
simultaneously fine-tune M in S and T. First we generate the
positive tuple set for each tuple in ’RlT and R by using the
capability of LLM and data augmentation strategies. Next we
adopt the self-supervised contrastive learning in R?— and R}
to fine-tune M.After self-supervised contrastive learning, we
further adopt M to execute K nearest neighbour search in
R} x R, and adaptively select high-quality tuple pairs CT
with pseudo-labels as the new training data. Finally, we fine-
tune M using the supervised contrastive learning in D° and
CT. M is iteratively fine-tuned until the maximum iteration
iter is reached.

V. EXPERIMENTAL STUDY

In this section, we conduct comprehensive experiments to
evaluate the performance of UDAEB. First, we evaluate the
accuracy of UDAEB with different K values across several
cross-domain benchmarks. Then, we assess UDAEB using the
candidate set size ratio (CSSR) to demonstrate the quality of
the candidate set retrieved by UDAEB.

A. Experimental Setup

We show the experimental settings and datasets.

Baselines. We compare with the state-of-the-art entity block-
ing methods, including DeepBlocker [1], Sudowoodo [2] and
STransformer [7]. We implement UDAEB using Pytorch 2.3
and transformer-based FlagEmbedding library [15]. we use
bge-large-en as the pre-trained model for M and adopt
Mistral-7B [16] as the LLM for enrichment. We adopt the
AdamW optimizer with the learning rate of le-5, and the batch
size of 16 for fine-tuning. The number of iteration steps is 5
for all datasets. For data enrichment, we adopt vLLM [17] to
accelerate the inference process.

For all baselines, we adopt their default implementations
and settings. For fair comparison, we also incorporate the
labeled training instances from the source domain into their
generated training data. We use the same dimensions of em-
beddings for all baselines and do not compare their efficiency
in K nearest neighbor search, as all transform tuples into
embeddings with the same dimension sizes. Thus, in the
remaining part of the experiment, we mainly focus on the
effectiveness of entity blocking, including PC, PQ, and CSSR.

Datasets. Table I shows the statistical information of all used
benchmark datasets. Here we focus on unsupervised domain
adaptation and denote an entity blocking task by S — T, where
S and T are the source and target domains.

Metrics. Following Sudowoodo [2] and DeepBlocker [1], we
adopt three evaluation metrics: (a) pair completeness (PC),
also known as Recall, which is the fraction of true matched
tuple pairs identified in the golden groundtruth; (b) pair quality
(PQ), also known as Precision, which is the fraction of true
matched tuple pairs in the candidate tuple pairs; and (c) the
candidate set size ratio (CSSR), which is the fraction of
candidate size in |R]| x |R]|.
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Configuration. We conducted the experiments on a machine
powered by 256GB RAM and 32 processors with Intel(R)
Xeon(R) Gold 5320 CPU @2.20GHz and 2 NVIDIA GeForce
A800 GPUs. Each experiments was run 3 times and the
average is reported.

B. Comparison of Effectiveness

In Figure 2(a) to 2(h), where we vary K from 1 to 20,
we display the PC and PQ of the baselines. The curve
approaching the upper left corner of the figure indicates
better performance. UDAEB consistently demonstrates higher
accuracy than other baselines across PC and PQ metrics,
particularly noticeable for smaller values of K, e.g., when
K =1, UDAEB achieves PC and PQ values that are 50.9%
and 48.3% higher than the best performing baseline in RI-AB,
respectively. This underscores UDAEB’s capability to retrieve
all matching results with a small K by integrating similarity
feature alignment between the source and target domains,
enrichment by LLMs and iterative contrastive learning based
on LLLMs and high-quality pseudo-labels.

C. Candidate Set of Entity Blocking

In Figures 2(i) to 2(1), we present the CSSR values while
varying the PC of the baselines. A smaller CSSR and a larger
PC (w.r.t. the curve approaching the lower right corner of
the figure) indicate better performance. UDAEB consistently
outperforms other baselines, suggesting that it returns a smaller
set of candidates for downstream entity matching processes
compared to others, even when they are tasked with retrieving
the same number of matching tuples. Additionally, the entity
resolution pipeline involving UDAEB demonstrates greater ef-
ficiency than others, as UDAEB achieves similar performance
in entity resolution using smaller values of K.

D. The Training Cost

We evaluate the training time of different baselines in
Table II. Although UDAEB adopts LLMs for data enrichment
and an iterative process for fine-tuning M, its training time
is not high, e.g., 521s and 274s of data enrichment and the
iterative process of learning M on RI-AB, respectively.

VI. RELATED WORK
A. Entity Blocking

We classify entity blocking into rule-based methods, tradi-
tional ML-based methods, and deep learning-based models.
(1) Rule-based methods. These non-learning methods adopt
hash-based, sort-based, size-based, and similarity-based tech-
niques that require handcrafted rules by experts to retrieve
tuple pairs from datasets [19]. More effective methods have
been proposed, including meta-blocking [20], matching de-
pendencies [21], and DNF-based methods [22], which fully
consider the correlations among tuples and attributes. Due to
the limitations of these approaches, learning rules have been
introduced to discover rules based on predefined predicates,
such as ApproxDNF [23], BSL [24], and EM-GBF [25].
Sparkly [26] employs the tf/idf blocking technique to achieve
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TABLE I: Datasets used in our experiments, # means Number of

Domain | # All Pair | # Match Pair | # of Original Attributes | # of Attributes after Enrichment | # |R;], |R+|

Dataset |
Abt-Buy (AB) [18] Product 9,575 1,028
Walmart-Amazon (WA) [18] Product 10,242 962
Amazon-Google (AG) [18] Product 11,460 1,300
iTunes-Amazon (IA) [18] Music 539 132
DBLP-ACM (DA) [18] Citation 12,363 2,224
DBLP-Scholar (DS) [18] Citation 28,707 5,347
RottenTomatoes-IMDB (RI) [3] Movies 600 190

3 8 1081,1092
5 9 2554,22074
3 9 1363,3226
3 6 6907,55932
4 6 2616,2294
4 6 2616,64263
3 5 557,554
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Fig. 2: Effectiveness evaluation. For figures varying K, the curve near upper left corner for PC, and near upper right corner
for PQ indicate better performance. For figures varying PC, the curve near lower right corner indicates better result.

TABLE 1II: The Training Time of Different Baselines (in
seconds). For UDAEB, we split it as the enrichment time
(Tenrich) and fine-tuning time Tgy.

Datasets | UDAEB (Tenrich + Trr) | DeepBlocker | Sudowoodo

RI-AB 521 + 274 73 137
RI-WA 437 + 309 594 137
WA-AG 434 + 291 116 383
AB-AG 476 + 313 116 235

high efficiency and effectiveness. (2) ML-based models.
These methods learn ML classifiers to make inferences ef-
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ficiently, such as Smurf [27] and supervised meta-block [28].
Most of them focus on active learning and accelerating the
inference of ML models. (3) DL-based models. With the
advent of neural networks, state-of-the-art entity blocking
models are based on deep learning, including DeepER [29],
STransformer [7], DeepBlocker [1], SC-Blocker [30], Su-
dowoodo [2] and UniBlocker [31] that design embedding
models with contrastive learning.

Compared with existing works, UDAEB focuses on cross-
domain entity blocking and proposes a framework that lever-
ages the capabilities of LLMs for enrichment. Furthermore, we
enhance contrastive learning in entity blocking by using self-
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supervised methods based on LLMs and supervised methods
utilizing generated pseudo-labeled training instances.

B. Unsupervised Domain Adaptation

In the ML community, unsupervised domain adaptation
techniques are well-studied and can be broadly classified into
five categories: (1) feature-centric methods, e.g.,AE-SCL [32];
(2) loss-centric methods, e.g., CGANS [14]; (3) pseudo-
labeling techniques, e.g., [33]; (4) data selection methods, e.g.,
[34]; and (5) pre-training methods, e.g., [35].

In entity resolution, unsupervised domain adaptation has
been developed for entity matching, including DADER [3],
MESN [4], TL-ER [36], TransER [37] and MELD [6]. Unlike
entity matching, which is typically framed as a binary clas-
sification task, entity blocking is a ranking task. Therefore,
we employ different methods for cross-domain entity blocking
that is effective and efficient.

VII. CONCLUSION

This paper introduces UDAEB, an unsupervised domain
adaptation framework for entity blocking. UDAEB comprises
three main steps: warmup, which aligns feature representations
in the similarity space between source and target domains;
enrichment, leveraging LLMs to enhance robust attributes for
both domains; and iteration, integrating self-supervised and su-
pervised contrastive learning using LLMs and pseudo-labeled
training instances. We conduct comprehensive experiments
across seven benchmarks to show the superior performance
of UDAEB against the state-of-the-art methods using three
standard metrics, i.e., PC, PQ, and CSSR.
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