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Abstract

Entity resolution is a fundamental problem in
data management that aims to identify all dupli-
cate entries within collections of multi-attribute
tuples. Most existing works focus on super-
vised learning, relying on large amounts of
high-quality labeled data, including both pos-
itive and negative tuple pairs that are meticu-
lously prepared. However, in reality, the manual
annotation process is labor-intensive; in partic-
ular, selecting high-quality negative data for la-
beling is both important and challenging. In this
paper, we propose an end-to-end ER solution,
PUER, to address low-resource entity resolu-
tion (ER) by leveraging Large Language Mod-
els (LLMs) in a Positive-Unlabeled (PU) learn-
ing setting, where only a small number of posi-
tively labeled examples, e.g., 50, and unlabeled
data are provided. Unlike directly fine-tuning
LLMs in a supervised manner, we solve the en-
tity matching task using reinforcement learning
and propose a self-adaptive reward function in
the process of RL. To enhance performance,
we design an iterative workflow based on the
co-training mechanism that fully utilizes entity
blocking component to assist the entity match-
ing. This workflow aims to improve the robust-
ness and quality of pseudo-labels so that the
performance of entity matching is improved.
Comprehensive experimental results on various
benchmark datasets demonstrate the superiority
of PUER. Full version and code are available1.

1 Introduction

Entity resolution (ER) aims to identifying all tuple
pairs from two relational tables that refer to the
same entities, making it a key components of data
cleaning with the goal of deduplicating records in
datasets. Traditionally, the ER task consists of two
components, entity blocking (EB) and entity match-
ing (EM). Entity blocking efficiently retrieves po-
tentially matched tuple pairs, while entity matching

∗* Corresponding author
1https://github.com/authurlord/PUER

verifies whether these tuple pairs refer to the same
entities.

Traditionally, the entity resolution has been ex-
tensively studied and most of solutions reply on
a sufficient number of annotated tuple pairs to
achieve good performance. However manual an-
notation is costly, as demonstrated by methods like
Ditto (Li et al., 2020b) and DeepMatcher (Mud-
gal et al., 2018). To address it, a few existing EM
approaches focus on unsupervised learning, semi-
supervised learning and active learning. For in-
stance, TDmatch (Ahmadi et al., 2022) is an unsu-
pervised ER approach based on graph creation and
random walk, while only relying on the data distri-
bution cannot have very high accuracy due to the
extreme class imbalance. PromptEM (Wang et al.,
2022) generates pseudo-labels for low-resource ER
in the semi-supervised learning. While it partially
alleviates the annotation cost, selecting and label-
ing high-quality positive and negative tuple pairs
from large datasets remains challenging. Active
learning approaches, e.g., (Arasu et al., 2010), se-
lect ambiguous tuple pairs for user labeling, but
this also incurs significant manual annotation costs.
In this work, we focus on the few-shot Positive-
Unlabeled (PU) learning, where only a small num-
ber of labeled positive tuple pairs are provided
along with two relational tables. To the best of
our knowledge, we are the first to explore the ER
task in the few-shot PU learning context.

Entity resolution, which typically replies on
both positive and negative training data, is partic-
ularly relevant to few-shot PU learning (Bekker
and Davis, 2020). In practice, only users who
detect duplicate issues in their datasets often in-
vest resources to find and integrate these dupli-
cates, so that these detected duplicates instances
are treated as labeled positive data. Negative tuple
pairs are generally not provided. Additionally, in
a search engine scenario, users might ask a ques-
tion and receive multiple semantically identical re-
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sponses (Niu et al., 2016). These responses are con-
sidered positive data. While negative tuple pairs can
be relatively easy to collect, acquiring high-quality
negative pairs in large-scale datasets is non-trivial
and requires manual annotation and verification,
presenting a challenge for annotators (Wang et al.,
2024b). Building on these observations, we investi-
gate the ER task within the framework of few-shot
PU learning to address these challenges effectively
with minimal labelling cost, while aligning with
human preference.

However, existing ER methods based on pre-
trained Language Models (e.g., RoBERTa) primar-
ily learn distribution and decision boundaries from
large sets of annotated samples. This approach re-
sults in inefficiencies in labeled data utilization,
placing these methods at a disadvantage in few-
shot scenarios. Furthermore, they lack the capa-
bility to generalize well, and cannot achieve high-
performance EM tasks based solely on a limited
number of positive sample annotations. Recently,
as the advanced performance of large language
models (LLMs), they have been explored in the en-
tity matching task. JellyFish (Zhang et al., 2024)
addresses various data pre-processing tasks, includ-
ing entity matching, by leveraging LLMs in the
instruction-tuning and reasoning manner. Table-
GPT (Li et al., 2024b) employs and fine-tunes on-
line GPT-3.5 on various data pre-processing tasks.
Considering the data privacy concerns, we focus
on using local LLMs that are open-sourced and can
be fine-tuned in local environments.

Motivated by the above considerations, we ex-
plore the ER problem within the framework of few-
shot PU learning by harnessing the capabilities of
local LLMs. Our objective is to fully utilize en-
tity blocking to assist the entity matching process
and to develop an LLM-based model that can effi-
ciently and effectively retrieve all matched tuple
pairs from limited labeled data. Unlike traditional
methods that treat entity matching purely as a bi-
nary classification task, our approach is the first to
formulate entity matching as a reinforcement learn-
ing problem while simultaneously fine-tuning the
model using both Supervised Fine-Tuning (SFT)
and reinforcement learning. Furthermore, to inte-
grate entity blocking with entity matching, we in-
troduce an iterative workflow that progressively
generates high-quality pseudo-labels, facilitating
mutual learning among these components.

Our contributions are as follows:

◦ Beyond binary classification, we are the first to
employ reinforcement learning to solve the en-
tity matching, and design a self-adaptive reward
function to enhance the convergence speed.

◦ We propose an end-to-end entity resolution
workflow that iteratively make full use of the en-
tity blocking model to select high-quality train-
ing data and jointly fine-tunes two entity match-
ing models through a co-training mechanism.

◦ We conduct comprehensive experiments to
evaluate the efficiency and effectiveness of our
approach, demonstrating its superiority over ex-
isting methods.

2 Related Work

We classify ER into entity blocking and matching.

Entity blocking. We classify entity blocking as
(1) rules, e.g., handcrafted rules (Papadakis et al.,
2020, 2014; Fan et al., 2009; Kejriwal and Mi-
ranker, 2015), and learned rules (Michelson and
Knoblock, 2006; Kejriwal and Miranker, 2015;
Singh et al., 2017a; Paulsen et al., 2023), (2) tradi-
tional ML, e.g., (C. et al., 2018; Efthymiou et al.,
2015), and (3) deep learning, e.g., (Thirumuru-
ganathan et al., 2021; Brinkmann et al., 2024; Wang
et al., 2023; Reimers and Gurevych, 2019; Wu et al.,
2023; Wang et al., 2024a), which retrieve poten-
tially matched tuple pairs from large-scale datasets.

Entity matching. There are host of works on en-
tity matching, including rule-based methods (Guo
et al., 2010; Fan et al., 2011; Whang and Garcia-
Molina, 2013; Singh et al., 2017b), ML-based meth-
ods (Konda et al., 2016; Bilenko and Mooney,
2003; Wu et al., 2020) and deep learning-based
methods (Li et al., 2020b; Mudgal et al., 2018;
Ebraheem et al., 2018; Zhao and He, 2019; Li et al.,
2020a; Fu et al., 2019). Recently low resource en-
tity matching based on deep learning models has
been paid attention, including (1) active learning
ER, e.g., (Qian et al., 2017; Meduri et al., 2020;
Kasai et al., 2019; Nafa et al., 2022), (2) data aug-
mentation ER, e.g.,Rotom (Miao et al., 2021), (3)
unsupervised learning ER, e.g., (Zeng et al., 2024;
Ahmadi et al., 2022), (4) transfer learning ER, e.g.,
(Kirielle et al., 2022; Tu et al., 2022; Sun et al.,
2024; Loster et al., 2021), (5) semi-supervised
learning ER, e.g.,PromptEM (Wang et al., 2022),
(6) multi-task learning, e.g.,Unicorn (Fan et al.,
2024a). and (7) information fusion (Yao et al.,



2021). There are also works to combine the entity
blocking and matching models for mutual learn-
ing, e.g., (Wu et al., 2023; Wang et al., 2023;
Li et al., 2021), and works by leveraging local
LLMs (Zhang et al., 2024; Wadhwa et al., 2024)
and online LLMs (Li et al., 2024b; Wang et al.,
2025; Li et al., 2024a; Fan et al., 2024b). How-
ever, none of the above works address few-shot the
Positive-Unlabeled setting, such that only as small
number of positive instances are given, which is
more practical in real-life.

3 Preliminaries

In this section, we first present the ER problem, and
then introduce the entity blocking and matching.

3.1 Problem Formulation

Given two relational tables of multi-attribute tu-
ples, the goal of entity resolution (ER) is to identify
pairs of tuples that refer to the same entity. The
ER task generally consists of two main compo-
nents: entity blocking and entity matching. The
entity blocking component efficiently retrieves a
candidate set of potentially matching tuple from
large tables, thereby avoiding the quadratic time
complexity of comparing all tuple pairs between
relational tables. The entity matching component
then predicts whether tuple pairs in the candidate
set are matches.

Definition 1: (ER under the few-shot positive-
unlabeled setting.) Given two relational tables of
multi-attribute tuples Rl and Rr, and a set P con-
sists of a small number of positive tuple pairs, the
objective of few shot PU entity resolution (ER) is to
identify all matching tuple pairs from Rl ×Rr. 2

In this paper, we mainly focus on addressing
entity matching task of ER. We fully utilize existing
entity blocking techniques to enhance the efficiency
and effectiveness of the matching process.

3.2 Entity Resolution

Following previous work (Wu et al., 2023), we
decompose entity resolution into entity blocking
and entity matching.

Entity blocking. The entity blocking Blocker, pri-
marily utilizes the SentenceBert model, denoted
as FRAG, to transform each tuple t into an embed-
ding vector (Thirumuruganathan et al., 2021; Wang
et al., 2023; Wu et al., 2023; Li et al., 2020b). Given

the training data (t,Pt,Nt), where Pt and Nt rep-
resent the positive and negative sets of tuples that
match and mismatch with t, we fine-tune FRAG via
contrastive learning (Oord et al., 2018).

Entity matching. Previous work (Wang et al.,
2025) formulates the entity matching into two sub-
tasks: Matcher FM

EM and Selector FS
EM.

Matcher. Given a tuple pair (t, s) and a domain-
specific prompt ptm as EM instruction, we could
query LLM to transform (t, s) to a binary decision
pm ∈ {Yes,No}, s.t. pm = LLM(ptm, (r, si)).
The Matcher FM

EM is consistent with all existing
entity matching works, e.g.,JellyFish (Zhang et al.,
2024), Ditto (Li et al., 2020b), aiming to identify-
ing whether a tuple pair is matched or not. Matcher
is supervised fine-tuned (SFT) with LoRA and
aims to provide domain-specific decision boundary.

Selector. Selector takes a pivotal tuple t, a list of
candidate tuples Cs(t) = {s1, . . . , s|Cs|}, and a
prompt pts as inputs, and outputs a list of positive
ones in Cs(t). It lets LLMs check more examples
so that they make correct decision. Selector targets
at re-ranking Cs by simulating human preference.

The Matcher subtask is mainly used in most EM
approaches, e.g.,JellyFish, while Selector has not
been as extensively studied. Although (Wang et al.,
2025) introduced it to address the EM, they did not
further fine-tune it to improve its performance.

4 RL-based Entity Matching

As discussed above, the entity matching task is
formulated as two sub-tasks, Matcher FM

EM and
Selector FS

EM. In this section, we focus on how to
fine-tune the Selector to make policies from a list
of candidate tuples. Here we assume that FS

EM is
fine-tuned using a (pseudo-)labeled training dataset
DS

train = {(t, Cs(t),Lt)}, where Lt is the label of
the pivotal tuple t. The process of generating DS

train

will be discussed in Section 5.

RL-based Selector. To select matching tuples from
a pivotal tuple, we employ the Group Relative
Policy Optimization (GRPO) (DeepSeek-AI et al.,
2025) to fine-tune the Selector so that it can bet-
ter adapt to the dynamic changes and improve its
accuracy. However, the number of positive tuples
in the candidate list is very small, resulting in a
continuously low reward value during the learning
process of GRPO. To address this issue, we design
a self-adaptive reward model.



GRPO. Given each pivotal tuple t from DS
train

that follows the distribution P , we adopt
GRPO (DeepSeek-AI et al., 2025) with the fol-
lowing loss function.

JGRPO = E[t ∼ P (DS
train), {oi}Gi=1 ∼ πθold(O|t)]

1

G

G∑
i=1

(
min

(
πθ(oi|t)
πθold(oi|t)

Ai, clip

(
πθ(oi|t)
πθold(oi|t)

,

1− ϵ, 1 + ϵ

)
Ai

)
− ηDKL(πθ||πref)

)
where Ai is the advantage function computed
within a group of rewards. The Selector FS

EM is
fine-tuned in two stages. First, to address the cold
start problem, we initialize FS

EM using SFT, which
enables it to adapt to the selection task. Subse-
quently, FS

EM is further fine-tuned using GRPO
with the JGRPO loss function.

Input and Output Formats of FS
EM. Given a hand-

crafted instruction pts, a tuple t, and a candidate list
Cs(t), we first formulate them into a final prompt
following (Wang et al., 2025). We then feed this
prompt into the function FS

EM. Then FS
EM subse-

quently produces the response r.

r = <positive>[ ... ]</positive><negative>[ ... ]</negative>

Here, the lists of positive and negative tuple
IDs from Cs(t) are enclosed within the markers
<positive> and <negative>, respectively. Here no-
tice that we also let FS

EM return negative tuples to
make sure that it also focuses on negative ones.

Self-adaptive Reward Function. Given a tuple t,
the candidates Cs(t), and the label vector Lt, we
design a reward function R that returns a scalar
reward value for RL, where Lt ∈ {0, 1}|Cs(t)| is a
binary vector indicating whether each candidate in
Cs(t), e.g., the i-th element in Cs(t), is a true match
(Lt[i] = 1) or not (Lt[i] = 0). The reward function
R contains the following steps.

(1) Step 1: Answer Extraction. We handcraft the
regular expression to extract the list Lpos of positive
tuple IDs and the list Lneg of negative ones from the
response r of FS

EM. We return a zero reward if Lpos

or Lneg cannot be parsed successfully from r, if the
tuple IDs in Lpos or Lneg are not within the range
[1, |Cs(t)|], or if |Lpos|+ |Lneg| ≠ |Cs(t)|. In other
words, the answer extracted from the response must
be valid. If this condition is met, we proceed to Step
2; otherwise, a zero reward is returned.

Input: a collection of training data DS
train = {(t, Cs(t),Lt)},

the number of iteration itermax, the smoothing factor α.
Output: the policy πEM.
1. Split DS

train into training data DS
train and validation data DS

valid;
2. SFT FS

EM in DS
train as the cold start.

3. iter := 0, w
(0)
pos = 1, w

(0)
neg = 1;

4. while iter ≤ itermax do
5. The reward R = Hw(Pt,Lt, w

(iter)
pos , w

(iter)
neg );

6. Fine-tune FS
EM in DS

train with GRPO using the reward R;
7. Compute the prediction Pvalid = FS

EM(DS
valid);

8. Compute FN and FN by comparing Pvalid and Lvalid;
9. wpos =

FP+ϵ
FN+FP+ϵ

, wneg =
FN+ϵ

FN+FP+ϵ
;

10. w
(iter+1)
pos := (1− α)w

(iter)
pos + αwpos;

11. w
(iter+1)
neg := (1− α)w

(iter)
neg + αwneg;

12. iter := iter + 1;
13. return FS

EM;

Figure 1: RL-based Selector

(2) Step 2: Similarity reward computation. Intu-
itively, we aim to measure the similarity between
the answer and the ground truth. Hamming similar-
ity is a good option.

R(t, Cs(t),Lt) = H
(
Enc(Lpos, Lneg),Lt

)
where Enc is a handcrafted encoding function
that transforms Lpos and Lneg into a binary vec-
tor Pt of the same dimension as Lt. H repre-
sents the Hamming similarity, s.t. H(Pt,Lt) =∑|Cs(t)|

i=1 1Pt[i]=Lt[i]

|Cs(t)| . A higher H(Pt,Lt) indicates
better performance of FS

EM, while a lower value
suggests suboptimal performance.

However, directly using H has the following
drawbacks. First, the ratio of positive tuples in Cs
is very small, and the rewards from negative tuples
would dominate the exploration process, causing
the feedback from the reward function to remain
at a very low value. Second, the goal of entity
matching is to reduce both false positives (FPs)
and false negatives (FNs). When the number of
FPs increases, we expect FS

EM to focus on reducing
FPs; otherwise, it should focus on reducing FNs.
The current H does not encourage this behavior in
FS
EM, causing it to spend a large number of itera-

tions exploring unseen regions.
To address these issues, we design a weighted

Hamming similarity Hw:

Hw(Pt,Lt, wpos, wneg) =∑|Cs(t)|
i=1 1Pt[i]=Lt[i]=1wpos + 1Pt[i]=Lt[i]=0wneg∑|Cs(t)|

i=1 1Lt[i]=1wpos + 1Lt[i]=0wneg

For the positive tuples in Lt, we assign a weight
wpos, and for the negative tuples, we assign a



weight wneg. By integrating these weights into the
reward function, FS

EM is more inclined to focus on
one side, i.e., either positive or negative data.

The final problem is how to set the values of
wpos and wneg. Our idea is that if FS

EM has an in-
creasing number of false positives, we should in-
crease the value of wpos so that GRPO focuses on
reducing the false positives. Otherwise, we encour-
age GRPO to find true positives from the negative
tuples. To achieve this, we split DS

train into vali-
dation data DS

valid and compute the false positives
(FPs) and false negatives (FNs) in each iteration.
Let w(i)

pos and w
(i)
neg be the weights for the i-th iter-

ation. We use FS
EM to make predictions Pvalid on

DS
valid, and then compute FPs and FNs. The current

weights wpos and wneg are set to the percentages
of FPs and FNs, respectively. However, resetting
these weights in each iteration would lead to an un-
stable reward function. To gradually change these
values, we introduce a smoothness factor α to up-
date the weights with small adjustments. Specifi-
cally, we set w(i+1)

pos := (1− α)w
(i)
pos + αwpos and

w
(i+1)
neg := (1− α)w

(i)
neg + αwneg.

To further reinforce the impact of positive tuples
in Lt, we incorporate semantic similarity into the
reward function as prior knowledge. This guides
the RL process to find a good direction. Our final
reward is as follow.

R(t, Cs(t),Lt) =Hw(Pt,Lt, wpos, wneg)+

β · 1

|S|
∑
s∈S

Simcos(vec(t), vec(s))

where β is a hyper-parameter and 0.2 by default, S
is the set of true positives in the prediction of FS

EM,
Simcos is the cosine similarity between two vectors,
and vec() is the embedding returned by FRAG.

Figure 1 illustrates the RL process of FS
EM. In

addition to DS
train, the number of iterations itermax

and the smoothing factor α are added as inputs.
Initially, we set w(0)

pos and w
(0)
neg to 1, indicating the

normal Hamming similarity (line 3). In each iter-
ation, we re-formulate the reward function using
Hw (line 5) and fine-tune FS

EM using GRPO with
the reward function R (line 6). We then update the
weights of positive and negative tuples using the
gradual update rules (lines 7-11).

5 An ER Workflow

In this section, we present an ER workflow to train
the entity matching models FEM with the assistance

of an entity blocking model FRAG. The workflow
takes as input two relational tables, Rl and Rr, and
a set P of positive tuple pairs. As shown in Figure 2,
the workflow consists of three main steps: data
enrichment, entity blocking, and entity matching.

Step 1: Data enrichment. Enriching tuples in Rl

and Rr with additional attributes, denoted as B̄,
is a common and effective method. Due to the un-
certainty (Farquhar et al., 2024) inherent in LLMs,
we observe that the values of B̄ imputed for a
tuple can vary depending on its paired tuples
(w.r.t. context). For each tuple t ∈ Rl and a set
St ⊂ Rr, we generate |St| tuple pairs, i.e., Pt =
{(t, s1), . . . , (t, s|St|)}, where si ∈ St. Given each
pair (t, si) ∈ Pt, we query the LLM to impute the
values of B̄ as ai = LLM((t, si), B̄, ptenr). Due to
LLM uncertainty, the imputed values a1, . . . , a|Pt|
may differ across pairs. To leverage these varia-
tions, we enumerate all imputations and augment
each tuple pair with multiple enriched versions.

Step 2: Entity Blocking. After data enrichment,
we enrich the positive set P into an augmented set
Penr. We then fine-tune our entity blocking model
FRAG using contrastive learning with a randomly
sampled negative set, following the approach in
(Wang et al., 2024a). The final output of this step
is the fine-tuned FRAG.

Step 3: An iterative EM workflow. Given FRAG,
Penr, Rl and Rr, we propose a progressive training
workflow that fine-tunes FM

EM and FS
EM.

Overview. We show the EM workflow. Given a tu-
ple t ∈ Rl, FRAG conducts similarity search by
retrieving its K nearest neighbors NNK(t), which
forms the candidate list for t. We define two point-
ers: ptrs and ptre, where ptrs indicates the bound-
ary separating positive tuples from the rest, such
that all tuples in the range [1, ptrs] are considered
positive, while tuples in the range [ptre,K] are con-
sidered negative. Specifically, (t,NNK(t)[i]) are
treated as positive tuple pairs for i ∈ [1, ptrs] and
(t,NNK(t)[j]) are negative ones for j ∈ [ptre,K].
[ptrs, ptre] are ambiguous pairs.

In the beginning of the training procedure, ptrs
is set to 1 and ptre is set to K, and FRAG gener-
ates the potentially positive and negative tuple pairs
PRAG and NRAG within [1, ptrs] and [ptre,K], re-
spectively. Next FRAG sends them to FEM, which
processes them using the co-training strategy. In
the next iteration, FRAG retrieves the new NNK(t)
for each tuple t and adjust ptrs and ptre by a step



Figure 2: The end-to-end entity resolution workflow

size δ, updating the pointers as ptrs = ptrs+ δ and
ptre = ptre − δ. The iterative process continues
until ptrs is no longer less than ptre.

Co-training strategy. Given potentially positive
tuple pairs PRAG and negative tuple pairs NRAG,
and the augmented set Penr, we simultaneously
learn Matcher FM

EM and Selector FS
EM. Consider-

ing the extremely low ratio of positive to negative
tuple pairs in Rl and Rr, and the fact that existing
methods, e.g., (Thirumuruganathan et al., 2021),
reply on random sampling for negative tuple pairs,
we assume that NRAG are more likely to be correct
in the first few iteration. Thus, we introduce a
warmup period during which NRAG are initially
treated as ground truth negatives and combined
with Penr to fine-tune FM

EM for the first λ iterations.
As ptre approaches ptrs after λ iterations, FM

EM is
then responsible for selecting which negative tuple
pairs should be included in the training data.

Specifically, we design a two-phase learning
method to simultaneously train FM

EM and FS
EM.

Phase 1. In the first phase, we add Penr into the
training data Dtrain. If the current iteration is less
than λ, we generate the training data Dtrain as
Dtrain = Penr ∪NRAG. For iterations beyond λ, we
have a checker step by using FM

EM to verify whether
the labels of tuple pairs in NRAG are consistent
with its predictions, The training data Dtrain is then
updated to Dtrain = Penr ∪ {(t, s)|FM

EM(t, s) =
No, (t, s) ∈ NRAG}.

After generating Dtrain, we proceed to gener-
ate the training data DS

train for the Selector. For
each pivot tuple t, we retrieve all tuple pairs
(t, s1), . . . , (t, sL) from Dtrain where t appears on
the left-hand side of the tuple pairs. We then de-
fine Cs(t) = {s1, . . . , sL}, and the label Lt is an
L-dimensional vector, where Lt[i] = 1 if (t, si) is
a matched tuple, and Lt[i] = 0 otherwise. We gen-

erate a triplet (t, Cs(t),Lt) as an element of DS
train.

Finally, we fine-tune FM
EM using SFT on Dtrain and

FS
EM using GRPO on DS

train, respectively.

Phase 2. Once FS
EM and FM

RM are well fine-tuned,
we adopt FS

EM to generate more positive training
data with pseudo-labels. For each tuple t ∈ Rl,
we first generate m augmented tuples, denoted by
t1, . . . , tm, and query FS

EM with the list Cs(ti) for
ti for i ∈ [1,m]. This process yields m lists of pos-
itive tuples R1, . . . , Rm. To enhance the accuracy
of these positive instances, we use FM

EM to make
inferences, obtaining additional positive training
data as ∆P = {(t, s)|FM

EM(t, s) = Yes, (t, s) ∈
R1 ∪ · · · ∪Rm}. Finally, we incorporate ∆P into
Dtrain, and FM

EM is continuously fine-tuned using
SFT to further enhance its performance.

The ER workflow that relies on RL training can
be time-consuming; nevertheless, they are usually
carried out in an offline preprocessing phase. For
example, deduplication of corpora executed offline
ensures that search engines do not return duplicate
or valueless results when an online query is given.
Similarly, when a new data source is introduced,
data integration is usually executed offline, allow-
ing the newly integrated data to be used for down-
stream online business processes. Consequently,
users mainly focus on the accuracy of detecting
duplicates, and the workflow remains worthwhile
as long as it does not introduce prohibitive delays.

6 Experimental Results

In this section, we empirically evaluated our
method, PUER using benchmark datasets on (1)
the effectiveness and efficiency of entity matching,
(2) the ablation study, and (3) a comparative anal-
ysis with online LLMs, particular ComEM (Wang
et al., 2025) with GPT-4o-mini. More experimental
results are provided in the supplemental material.



Experimental settings. We start with our settings.

Datasets. We conducted experiments using 11
benchmark datasets from the ER Benchmark
datasets (Köpcke et al., 2010), the Magellan data
repository (The Magellan Data Repository) and
WDC product data corpus (Primpeli et al., 2019)
used for evaluating Ditto (Li et al., 2020b), These
datasets include Amazon-Google (AG), Walmart-
Amazon (WA), Abt-Buy (AB), DBLP-ACM (DA),
DBLP-Scholar (DS), Company (CO), Cameras
(CA), Computers (COM), Shoes (SH), Watch
(WAT) and WDC-All-Small (WS). Following
Ditto, we randomly sample 50 positive tuple pairs
as labeled training data and retained the left and
right relational tables as all unlabeled data. The
statistics of all datasets are summarized in the sup-
plementary material.

Baselines. We implemented PUER in Python and
used the following baselines. (1) Ditto (Li et al.,
2020b), an entity matching model based on BERT;
(2) Rotom (Miao et al., 2021), an entity matching
model leveraging language models and data aug-
mentation through RL; (3) PromptEM (Wang et al.,
2022), a prompt-tuning model based on pretrained
language models; (4) Unicorn (Fan et al., 2024a), a
multi-task data matching model using a mixture of
experts; (5) CLER (Wu et al., 2023), a low-resource
entity resolution model that integrates entity block-
ing and matching; (6) JellyFish (Zhang et al., 2024),
an LLM based entity matching model using LoRA-
based instruction-tuning; (7) Sudowoodo (Wang
et al., 2023), an entity resolution framework based
on contrastive representation learning. We also
compared with the following online LLMs: (8)
BatchER (Fan et al., 2024b), a cost-effective batch
prompting to ER based on online LLMs, and (9)
ComEM (Wang et al., 2025), an LLM-based ER
model using Matcher, Comparer and Selecter.

For a fair comparison, all baselines are provided
with the same set of 50 positive tuple pairs (denoted
as P), all labeled negative pairs from the training
set of the benchmark, and the same relational left
and right tables. In contrast, PUER is provided with
P and relational left and right tables but without
the labeled negative pairs, representing a few-shot
PU (positive-unlabeled) setting. Notably, Unicorn,
and JellyFish were also pretrained on additional
labeled entity matching corpus.

Measures. We report precision (P), recall (R) and
F1 (F) score for entity matching following (Li et al.,

2020b). All results are reported in 100-scale.

Configuration. We select Qwen-2.5-7B-
instruct (Yang et al., 2024) as the backbone
of FEM and bge-large-en as the pre-trained
model for FRAG. We set K as 20, δ as 5,and τ as
0.02 by default and adopt the AdamW optimizer
with the learning rate of 1e-4 and 1e-5 for FM

EM

and FRAG, respectively. In GRPO of FS
EM, we

set the training batch size as 16, the length of
input prompt as 1024, the maximum output length
as 64, the mini-batch as 16, the learning rate of
the actor model as 1e-6, and the coefficient η of
KL loss as 0.001. We adopt verl (Sheng et al.,
2025), a RL training framework to fine-tune FS

EM

and remains other hyper-parameters by default.
For all baselines, we use their default settings.
We conduct our experiment on a single machine
powered by 1.5TB RAM and 128 processors with
Intel(R) Xeon(R) Platinum 8358 CPU @2.60GHz
and 4 NVIDIA A800 GPUs. Each experiment was
conducted twice, averaging the results reported
here.

Experimental results. We next report our findings.

Exp-1: Entity matching. We evaluate the effec-
tiveness of PUER in comparison to other base-
lines with aspect to entity matching. Table 1 shows
the performance of all baselines. PUER consis-
tently outperforms all other baselines across all
11 datasets in terms of precision, recall and F1-
score, achieving average improvements of 26.31%,
36.87% and 40.19%, respectively, and up to
63.21%, 50.09% and 53.42%. This verifies that
the co-training strategy between FS

EM and FM
EM

and interaction between FEM and FRAG are ef-
fective, where the Selector and the RAG blocker
enhance the performance of the entity matching
component. Furthermore, PUER exhibits greater
robustness compared to other baselines and is less
not sensitive with data distribution. Specifically,
PUER shows superior performance in 10 out of 11
datasets in terms of F1-score, e.g., at least 23.01%,
14.82% and 47.74% improvement in WS, DS and
Company dataset across different domains. This
highlights the stability of PUER and its effective-
ness independent of specific data distribution.

Compared with pre-trained baselines, PUER
also outperforms JellyFish, an LLM-based entity
matching model using handcraft prompts and
LoRA tuning, e.g., 16.63% F1-score improvement
on average. This underscores the effectiveness of



Datasets PUER (Ours) Ditto Rotom Unicorn PromptEM JellyFish Sudowoodo
P R F P R F P R F P R F P R F P R F P R F

AG 84.83 76.49 80.45 39.28 4.70 8.39 19.50 59.01 29.30 90.66 11.53 20.14 64.62 17.95 28.09 92.03 44.44 59.94 55.85 52.99 54.88
WA 93.95 88.60 91.20 78.43 20.72 32.78 11.80 73.10 20.30 89.99 60.62 72.44 93.55 30.05 45.49 80.09 93.78 86.39 46.41 50.25 48.25
AB 90.04 87.86 88.94 97.24 51.45 67.3 14.60 42.70 21.70 97.11 49.02 65.16 98.04 48.54 64.94 99.38 78.15 87.5 42.30 32.03 36.46
DA 95.47 99.77 97.57 99.5 89.63 94.31 80.9 97.1 88.2 99.29 95.27 97.24 100 86.04 92.49 99.76 97.07 98.40 78.55 98.19 87.28
DS 99.31 94.85 97.03 98.2 30.65 46.72 65.6 94.7 77.5 98.81 70.18 82.07 98.73 58.04 73.1 99.7 64.01 77.97 73.33 93.55 82.21
CO 98.56 79.18 87.82 25.06 100 40.08 n/a n/a n/a 87.49 3.84 7.37 n/a n/a n/a 96.43 22.07 35.92 30.62 25.28 27.69

CA 93.20 100.00 96.48 70.53 27.43 39.5 40.1 35.8 37.8 96.29 36.11 52.52 89.02 25.35 39.46 96.07 68.05 79.67 57.58 44.79 50.39
COM 98.67 99.33 99.00 65.64 28.76 39.99 29.3 50.2 37 92.82 69.23 79.31 80.57 74.58 77.57 97.5 78.26 86.82 37.08 48.49 42.02
SH 98.48 88.13 93.02 74.7 43.05 54.62 26.7 55.9 36.1 80.47 58.64 67.84 50.00 1.00 1.97 94.44 51.86 66.95 34.38 36.94 35.62

WAT 97.89 85.03 91.01 27.36 27.09 27.22 26.9 65.9 38.2 93.71 49.83 65.06 42.86 1.00 1.96 89.45 77.37 82.97 31.49 51.50 39.08
WS 87.67 95.57 91.45 71.89 20.28 31.64 27.4 75.00 40.2 95.97 43.73 60.09 91.55 28.05 42.94 96.64 52.92 68.39 40.99 63.10 49.70

Average 94.37 90.43 92.17 67.98 40.34 43.87 31.16 59.04 38.75 92.96 49.82 60.84 73.54 51.69 42.55 94.68 66.18 75.54 48.05 54.28 50.33

Table 1: Entity matching performance in comparison to baselines, n/a means the method cannot be terminated within 10 hours

Methods/Model AB AG DA DS WA

PUER (Ours) 88.94 80.45 97.57 97.03 91.20
CLER 75.86 47.56 80.04 55.96 70.02

BatchER (GPT-4) 85.22 64.06 96.04 89.48 81.22
ComEM (GPT-3.5-turbo) 87.62 69.63 90.85 84.68 86.37
ComEM (GPT-4o-mini) 88.24 71.47 90.58 87.84 88.56

Table 2: Comparison with Online Model (F1-score)

Datasets AG AB WA
Train Predict Train Predict Train Predict

Ditto 235 23 208 20 215 22
Rotom 522 23 435 20 487 23
Unicorn 725 17 602 13 654 14

PromptEM 1420 65 1533 42 1365 55
JellyFish 1243 45 1010 30 1190 42

PUER (Ours) 3561 208 4323 255 4555 339

Table 3: The Efficiency of Entity Matching (in seconds)

our end-to-end iterative framework. While Unicorn
achieves relatively good performance among the
baselines due to its mixture-of-expert architecture,
it struggles to attain high recall because of the small
set of positive instances.

To evaluate the ER framework that integrates
entity blocking and matching, we compare with
CLER and Sudowoodo in Table 1 and 2. PUER is
10.85%, 29.73% and 23.63% more accuracy in as-
pects of precision, recall and F1-score than CLER
on average (Table 2), which indicates that the pro-
posed workflow that interacts FRAG and FEM could
be beneficial to both of them. Due to the few-shot
PU setting, Sudowoodo struggles to generate high-
quality pseudo-labels relying solely on similarity
threshold and positive ratio, and the number of
high-quality pseudo-labels it generates is insuffi-
cient (Table 1). In contrast, PUER employs the
GRPO algorithm with a carefully designed reward
function, which enables it to tolerate noisy data
with better generalization ability.

In Table 2, we compared PUER with the online
BatchER (Fan et al., 2024b) and ComEM (Wang
et al., 2025) using GPT-3.5, GPT-4 and GPT-4o-
mini as the backbones. The result shows that PUER
achieves up to 15.5% higher F1-score, indicating
the effectiveness of the fine-tuning workflow.

Methods AG WA AB
P R F P R F P R F

PUER 84.83 76.49 80.45 93.95 88.60 91.20 90.04 87.86 88.94

w.o. Selector 33.43 97.86 49.83 11.42 100.00 20.51 42.20 94.66 58.38
w.o. enrich 65.92 76.06 70.63 81.42 88.60 84.86 88.62 90.77 89.68

w.o. co-train 63.66 84.61 72.66 75.73 93.78 83.79 85.30 87.37 86.33

Table 4: Ablation Study for Entity Matching

Exp-2: Efficiency of entity matching. We present
the fine-tuning time (Train) and inference time (Pre-
dict) of FEM in Table 3. Since FEM employs co-
training of the Selector and Matcher, as well as
an iterative workflow to gradually generate more
training data with pseudo-labels, PUER requires
significantly more time to fine-tune its entity match-
ing models and perform inferences compared to
other methods. Although PUER is notably slower,
its high accuracy in entity matching, as shown in
Table 1, justifies the use of RL and co-training strat-
egy despite the increased computational cost.

The training cost of PUER is bounded by the
number of training data. Despite its higher training
cost, it does not result in prohibitively high ex-
penses in few-shot setting. Considering the signifi-
cant improvement in the F1-score of PUER (e.g., at
least 16.63% F1 improvement over baselines) and
the unique background of the positive-unlabeled
setting and ER task, the higher cost can be tolerated
and is relatively negligible.

Exp-3: Quality of pseudo-labels. To further
demonstrate the effectiveness of our pseudo-
labeling mechanism in PUER, we conducted ex-
periments to measure the precision and recall of
pseudo-positive and pseudo-negative examples un-
der varying values of K in Table 5 following (Wang
et al., 2023). Notice that we discard tuple pairs of
pseudo-labels that are not included in the ground
truths provided by benchmarks so that the evalua-
tions are accurate and totally based on benchmarks.

By varying K from 5 to 9, the average preci-
sion and recall are 88.28% and 81.53%, respec-
tively. These results indicate the high quality of



Dataset K=5 K=7 K=9

P R P R P R

AG 78.33 67.52 77.24 67.52 76.17 67.09
WA 95.04 87.63 95.23 87.21 95.05 87.83
AB 92.96 89.88 93.01 89.30 91.47 89.78

Table 5: Quality of pseudo-labels under different K

our generated pseudo-labels. Furthermore, as K
increases, the quality of the pseudo-labels only de-
creases slightly. Although it may involve more tu-
ples for checking, our PUER is robust enough to
generate correct pseudo-labels, which is critical for
the further fine-tuning of the selector and matcher.

Exp-4: Flexibility of PUER. Given that our ER
framework does not rely on the matcher, we
adopted the EM model in Unicorn (Fan et al.,
2024a), a smaller model as the matcher of PUER.
Table 6 and 7 present the effectiveness and ef-
ficiency of PUERunicorn , which utilizes the EM
model of Unicorn as the matcher, respectively.

Dataset PUER PUERunicorn

P R F P R F

AG 84.83 76.49 80.45 80.18 76.07 78.07
WA 93.95 88.60 91.20 76.19 82.90 79.40
AB 90.04 87.86 88.94 90.28 76.69 82.93

Table 6: Effectiveness of PUER v.s. PUERunicorn.

Train Predict

Dataset PUER PUERunicorn PUER PUERunicorn

AG 3561 3027 (-534) 208 160 (-48)
WA 4555 3761 (-794) 339 205 (-134)
AB 4323 3618 (-705) 255 202 (-53)

Table 7: Efficiency of PUER vs. PUERunicon (in sec-
onds).

As evidenced by Table 6 and 7, the training time
is reduced to approx. 80% of the original time,
but the accuracy remains largely unaffected, which
indicates the effectiveness of the PUER framework,
regardless of whether the Matcher is a powerful
LLM or a simpler model. Under the few-shot PU
setting, considering the superior accuracy achieved,
the training time is deemed acceptable.

Exp-5: Ablation study. In Table 4, we present the
ablation study of PUER and its variants, namely
PUER without the Selector, without enrichment
and PUER without co-training that the selector
and matcher are trained independently. The results
demonstrate that each variant achieves lower accu-
racy compared to the complete PUER model.

Specifically, PUER without enrichment and
without the Matcher shows only a relatively small

performance drop. This suggests that LLMs al-
ready possess substantial prior knowledge, and
the Matcher does not contribute much in the few-
shot data setting. In contrast, PUER without the
Selector experiences a significant drop in accu-
racy, such as a 31% decrease on the AG dataset.
This finding indicates that the RL component in the
Selector plays a crucial role in generalization, par-
ticularly in few-shot scenarios. It enables the model
to collect sufficient data from the environment to
achieve robust performance.

To determine whether the pre-training process
of the LLM backbone includes the benchmark
datasets, we conducted an experiment of the few-
shot prompting using Qwen-2.5-7B-instruct.

CO WA DS AB AG

P 99.35 74.26 92.02 77.63 46.74
R 10.92 52.33 62.52 60.67 82.90
F 19.68 (–68.14) 61.40 (–29.80) 74.45 (–22.58) 68.11 (–20.83) 59.78 (–20.67)

Table 8: The effectivenss of Qwen-2.5-7B-instruct
(P/R/F)

As illustrated in Table 8, the F1-score of PUER
is at least 20.67 points higher than that of few-shot
prompting and 68.14 points at most, demonstrating
that only LLM backbone is not sufficient and PUER
is necessary to make more accurate predictions.

Dataset Methods |P| =10 20 30 40 50 100

AB
PUER 55.15 74.01 73.11 79.49 88.92 89.26
Unicorn 48.17 49.08 59.66 71.42 65.16 84.57
DITTO 17.39 21.58 34.04 45.66 67.3 82.35

WS
PUER 65.82 68.96 65.01 82.29 91.45 92.12
Unicorn 23.12 35.02 65.22 54.24 40.20 70.19
DITTO 13.25 20.57 27.45 35.69 31.64 66.10

Table 9: Performance Vary Labelling Budget |P| (F1)

Exp-6: Hyper-parameter study. We vary the
labeling budget |P| from 10 to 50 in Table 9.
PUER demonstrates robustness with respect to the
number of positive tuples, e.g., only 6.9% drop
when |P| decreases from 50 to 10 in WS.

7 Conclusion

In this paper, we propose, PUER, an end-to-end
ER solution for few-shot PU learning. We adopt
the reinforcement learning method to solve the en-
tity matching task, and design a self-adaptive re-
ward function. Furthermore, we introduce an itera-
tive training workflow that fully utilizes the entity
blocking model to assist the entity matching via
a co-training mechanism. Finally comprehensive
experiments across 11 benchmarks demonstrate the
superior performance of PUER.



Limitations

Our work, PUER, introduces an end-to-end entity
resolution solution tailored for few-shot positive-
unlabeled (PU) learning scenarios by leveraging
Large Language Models (LLMs) and reinforce-
ment learning. We propose an iterative co-training
mechanism that integrates entity blocking and en-
tity matching, including a novel self-adaptive re-
ward function for the reinforcement learning com-
ponent, to enhance performance with minimal la-
beled positive data.

Despite the promising results, our approach has
several limitations. Firstly, the reinforcement learn-
ing (RL) component, particularly the Selector fine-
tuned with Group Relative Policy Optimization
(GRPO), inherently introduces a higher level of
complexity in terms of training and hyperparame-
ter tuning compared to simpler supervised methods.
Secondly, while LLMs offer powerful generative
capabilities, the quality and consistency of the gen-
erated outputs (e.g., enriched attributes or pseudo-
labels) can be uncertain and may occasionally re-
quire careful validation. Lastly, as indicated by our
efficiency experiments, the proposed PUER frame-
work, with its iterative workflow and co-training
of multiple components including RL-based Selec-
tor and Matcher, exhibits a higher computational
complexity during both training and inference com-
pared to some traditional entity resolution methods.
This increased cost is a trade-off for the achieved
accuracy in low-resource settings.
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A Overview

In the supplementary material, we mainly provide
(1) a running example of entity resolution; (2) an
example of data enrichment using LLMs along with
our observation; (3) detailed hyper-parameter con-
figurations used in our experiment; (4) the notation
table from our full paper; (5) comprehensive de-
scriptions of the datasets used in our experiments;
(6) experimental results for entity blocking across
all datasets, comparing with other baselines in var-
ious settings; (7) a detailed comparison with on-
line model, e.g., ChatGPT, under different parame-
ter size for LLMs, and (8) detailed information of
prompts used in PUER.

B Examples of Entity Resolution

We present an example of entity resolution in Ta-
ble 11 (left table, denoted as Rl) and Table 12 (right
table, denoted as Rr). Both tables contain multiple
tuples with three fundamental attributes, specif-
ically Ā = {Manufacturer, price, title}. Among
these, the pairs l1162 and r2109, as well as l587 and
r2816, represent the same real-world entities. The
objective of the entity resolution task is to effi-
ciently and effectively identify all matching tuple
pairs between Rl and Rr.

C Examples of Data Enrichment

C.1 Schema Enrichment

In Table 13 and Table 14, we first use
LLMs to enrich the data with 6 addi-
tional attributes, denoted as B̄, where B̄ =
{category, subcategory, platform, edition, type,
modelno}. We then query LLMs for each tuple
using the attributes in B̄. The values of the columns
highlighted in blue are imputed by LLMs. These
imputed values provide PUER more valuable
information to identify matched tuple pairs.

C.2 Our Observation

In Table 13, we demonstrate that l1162 is imputed
with different values for B̄, specifically l11162 and
l31162, depending on whether it is paired with r2109
or r2816 (in Table 14). Based on these observations,
we can enhance the data quality of training data
in our Positive-Unlabeled (PU) setting. Such pair-
wise enrich problem can activate the ability of
LLM generating different information from various
perspective and context.

D Hyper-parameter Configuration

Please check Table 19 for detailed hyper-parameter
configuration and corresponding explanations. Our
code is available at https://anonymous.
4open.science/r/PUER-CB71.

We apply LLaMA-Factory (Zheng et al., 2024)
for training, and apply vLLM (Kwon et al., 2023)
for efficient inference. We use verl (Sheng et al.,
2025) for training RL-based Selector. To stabilize
the output result for Matcher and Selector, during
inference with vLLM, for querying LLM, we set the
temperature to 0, and top-p to 1 for deterministic
output.

We also incorporate outlines (Willard and Louf,
2023) to fix the output of LLMs to JSON format.

E Notation Table

In Table 15, we provide notation table and their
corresponding descriptions.

F The dataset descriptions

In Table 16, we provide descriptions of all bench-
mark datasets used in this paper. Following our PU
learning setting, for each dataset we only use 50
random sampled positive samples for PUER.

◦ The column # Dataset lists all datasets used in
this paper along with their abbreviation. For the
WDC dataset (w.r.t. WS, COM, CA, SH, WAT),
we sampled 50 positive tuple pairs within the
small size (1/20 of all pairs, following (Mudgal
et al., 2018; Li et al., 2020b)) of each dataset.

◦ The column # All provides the total number of
labeled examples for each dataset, and the col-
umn Match specifies the number of matched
examples for each dataset, including the train/-
valid/test splits.

◦ The column # of Original Attr shows the number
of attributes in each original dataset, and the
column # of Enriched Attr displays the number
of attributes for enrichment by PUER, i.e., |Ā|+
|B̄|. A detailed example for dataset is provided
in Figure 13 and 14.

◦ The column # of |Rl|, |Rr| indicates the sizes
of left and right tables for each dataset, respec-
tively.

◦ The column Proportion of PU represents the ra-
tio of PU positive sample(e.g., 50) to all labeled
training samples in benchmark datasets, while

https://anonymous.4open.science/r/PUER-CB71
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Methods/Model AB AG DA DS WA Avg

PUER (Qwen-2.5-7B) w.o. SFT 39.41 66.81 89.25 77.04 49.62 64.43

PUER (Qwen-2.5-0.5B) 12.54 17.40 99.32 96.32 14.80 48.08
PUER (Qwen-2.5-1.5B) 73.03 81.00 96.08 97.72 50.19 79.60
PUER (Qwen-2.5-3B) 82.72 79.30 95.95 97.70 87.07 88.55
PUER (Qwen-2.5-7B) 88.94 80.45 97.57 97.03 91.20 91.04

ComEM (Mistral-7B) 40.70 37.77 24.68 28.89 55.96 37.60
ComEM (Qwen2-7B) 72.39 61.03 81.49 76.57 72.96 72.89
ComEM (LLAMA3-8B) 74.37 49.50 78.91 68.79 42.33 62.78
ComEM (Mixtral-8×7B) 77.67 34.76 67.20 60.09 50.57 58.06

BatchER (GPT-4) 85.22 64.06 96.04 89.48 81.22 83.20
ComEM (GPT-3.5-turbo) 87.62 69.63 90.85 84.68 86.37 83.83
ComEM (GPT-4o-mini) 88.24 71.47 90.58 87.84 88.56 85.34

Table 10: Comparison with Online Model (F1 Score). For our method PUER, we fix the RL-based Selector model
as Qwen-2.5-7B, and only change Matcher with different backbone model.

id title Manufacturer price

l1162 motu digital performer 5 digital audio software competitive upgrade ( mac only ) motu 395.0
l587 microsoft word 2007 version upgrade microsoft 109.95

Table 11: Examples of Amazon dataset with basic attributes Ā

the column Proportion of Positive Samples rep-
resents the ratio of PU positive sample(e.g., 50)
to all labeled positive training samples.

G Full Version of Blocking Result

Table 17 shows full version of blocking result in
all datasets. PUEL shows the superior performance,
i.e., highest values of PC and PQ and the smallest
value of K in most cases.

H Detailed Comparison with Online
Model

Table 10 shows the comparison of PUER and other
offline and online models without SFT (Supervised
Fine-Tuning). The results demonstrate the effec-
tiveness of co-training of Matcher and Selector
subtasks in our proposed method PUER. All per-
formances are evaluated under the same In-Context
Learning settings, using an equal number of posi-
tive and negative samples for demonstration.

In Table 10, the upper section includes our meth-
ods PUER and PUER without SFT, while the lower
section follows the setting from (Wang et al., 2025).

We also compare the matching result of PUER
with backbone LLMs under different parameter size
for Matcher, e.g., 0.5B, 1.5B, 3B and 7B in Ta-
ble 10. We can observe that larger backbone LLMs

are not consistently stronger in entity matching
performance. However, the 7B model achieve the
highest average performance among different sce-
narios.

I PC/PQ Curve for Blocking Experiment

Figure 7 shows the performance of our RAG
blocker in PUER, in terms of PC ( Top-K Recall)
for different values of K(candidate set size). A
curve approaching the upper left corner of the fig-
ure indicates better performance. The results show
that the RAG blocker of PUER is highly effective,
capable of retrieving the smallest number of candi-
date tuples while achieving the highest recall.

J CSSR Curve for Blocking Experiment
varying K

Figure 8 provide the Blocker performance(in PC,
w.r.t. Top-K Recall) under different K, following
the setting of DeepBlocker (Thirumuruganathan
et al., 2021). The curve approaching the lower
right corner of the figure indicates better perfor-
mance. PUER also performs the best among all
baseliens in most datasets.



id title Manufacturer price

r2816 microsoft word 2007 upgrade ( pc ) null 109.95
r2109 motu digital performer dp5 software music production software null 319.95

Table 12: Examples of Google dataset with basic attributes Ā

id title Ma. price category sub-category platform edition type modelno

l11162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
Produc-
tion

DAWs Mac Competitive
Upgrade

Software DP5

l21162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
& Music
Software

Audio Editing
& Production

Mac Standard Software 5

l31162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
Editing
Software

DAW (Digital
Audio Worksta-
tion)

Mac Upgrade Software 5

l1587 microsoft word 2007 version
upgrade

microsoft 109.95 Productivity
Software

Office Suites Windows Standard Upgrade 2007

l2587 microsoft word 2007 version
upgrade

microsoft 109.95 Productivity
Software

Word Process-
ing

Windows home Upgrade 2007

l3587 microsoft word 2007 version
upgrade

microsoft 109.95 software office Windows ultimate Upgrade 2007

Table 13: Examples for Amazon dataset (left table for Amazon-Google dataset). Grey columns are original
attributes(w.r.t. Ā), and blue columns are enriched attributes(w.r.t. B̄)). For each entity (e.g., l1162, l587), we report
three different enrichment outputs, to demonstrate the uncertainty of our proposed data enrichment methods. Ma. is
short for attribute Manufacturer.

K Example of the Schema Enrichment
Prompt ptSE

In Prompt Template 3, Entity 1 l1162 is from Ta-
ble 13(left table Amazon), and Entity 2 r2109 is
from Table 14 (right table Google).

For each dataset, we query LLM using the same
prompt ptSE with varying different Entity 1 and
Entity 2 multiple times. We then apply majority
voting to the different generated attributes to deter-
mine B̄.

L Example of the Data Enrichment
Prompt ptenr

Prompt Template 5 provides an example of ptenr
using the Amazon-Google dataset. The enriched
attribute set B̄ is obtained from the previous step
using ptSE.

ptenr is queried with different entity pairs, e.g.,
(l1162, l587), (l1162, r2109), (l587, r2816), (l587, r2109)
to generate different values of B̄.

M Example of the Subtask Matcher
Prompt ptm

Prompt Template 4 provides an example for the
Matcher subtask using the DBLP-Scholar (DS)
dataset. Paper 1 and Paper 2 both contain enriched
attributes that are extracted in the previous step us-
ing the prompt ptenr.

N Example of the Subtask Selector
Prompt pts

Prompt Template 6 provides an example for the
Selector subtask using the Amazon-Google (AG)
dataset. Entity 1 and Candidate already contain
enriched attributes extracted in the previous step
using the enrichment prompt ptenr. Additionally,
Candidate entities are also retrieved and ranked us-
ing the preceding Blocker component, i.e., FRAG.

O Training curve for Selector

We also list the curve for training GRPO-based
Selector in Fig. 9.



id title Ma. price category sub-category platform edition type modelno

r12816 microsoft word 2007 upgrade (
pc )

null 109.95 Productivity
Software

Office Suites Windows Standard Upgrade 2007

r22816 microsoft word 2007 upgrade (
pc )

null 109.95 Software Office Suites Windows Upgrade Desktop
Software

2007

r32816 microsoft word 2007 upgrade (
pc )

null 109.95 Productivity
Software

Word Proces-
sors

PC Upgrade Desktop
Software

WORD2007UPG

r12109 motu digital performer dp5
software music production soft-
ware

null 319.95 Audio
Produc-
tion

DAWs Software DP5

r22109 motu digital performer dp5
software music production soft-
ware

null 319.95 Audio
Produc-
tion

DAWs Mac Pro Software DP5

Table 14: Examples of Google dataset (right table for Amazon-Google dataset). Grey columns are original at-
tributes(w.r.t. Ā), and blue columns are enriched attributes(w.r.t. B̄)). For each entity (e.g., r2816, r2109), we report
three different enrichment outputs, to demonstrate the uncertainty of our proposed data enrichment methods. Ma. is
short for attribute Manufacturer.

Symbol Description
t, {A1, · · · , Am} tuple t with multi-attributes {A1, · · · , Am}

P,Penr the labeled positive training dataset, and its enriched version
PRAG, NRAG the set of potentially positive and negative tuple pairs by the RAG blocker
Rl, Rr the left and right relational tables of multi-attribute tuples
B̄, m the set of enriched attributes, the number of enriched attributes
K the top-K most similar tuples to retrieve by the blocker

NNK(t) the set of top-K most similar tuples with the tuple t
FRAG the entity blocking model of PUER
FEM the entity matching model of PUER
FM

EM the Matcher subtask in FEM

FS
EM the Selector subtask in FEM

Cs(t) the candidate list of the tuple t in FS
EM

Flabel the labeler of the Selector
Dtrain the generated training data to fine-tune FEM, including labeled and pseudo-labeled training instances

ptm, pts the prompts of Matcher and Selector
ptenr the prompt of data enrichment by LLMs
ptSE the prompt of enriching more attributes by LLMs
λ the warmup iteration

Membed Embedding model for Blocker
St pairwise enriched tuple set in right table Rr for t

pm(s, t) query for LLM-based Matcher, to determine whether tuple pair s, t is match or mismatch

Table 15: General notations with corresponding descriptions.

Dataset Domain # All # Match # of Original Attr # of Enriched Attr # |Rl|, |Rr| Proportion of PU Proportion of Positive Samples

Abt-Buy (AB) Product 9,575 1,028 3 8 1081, 1092 0.87% 8.11%
Walmart-Amazon (WA) Electronic 10,242 962 5 9 2554, 22074 0.81% 8.68%
Amazon-Google (AG) Electronic 11,460 1,300 3 9 1363, 3226 0.72% 7.15%

DBLP-ACM (DA) Citation 12,363 2,224 4 6 2616, 2294 0.67% 3.75%
DBLP-Scholar (DS) Citation 28,707 5,347 4 6 2616, 64263 0.29% 1.56%

Company(CO) Company 112,632 28,200 1 3 28200, 28200 0.07% 0.29%

WDC-All-Small(WS) Product 13,436 3,516 1 6 7437, 8091 0.77% 2.69%
Computer(COM) Electronic 3,865 1,005 1 7 2204, 2443 2.24% 8.98%

Camera(CA) Product 2,858 752 1 7 1561, 1743 3.54% 13.62%
Shoes(SH) Product 3,099 812 1 8 1600, 1767 3.10% 11.85%

Watch(WAT) Product 3,181 831 1 9 1821, 1991 2.84% 10.98%

Table 16: Datasets used in our experiments, # means Number of, # Attr provide the original/enriched attribute
number, Proportion of PU means the number of labeled samples divide all train samples in benchmark; Proportion
of Positive Samples means the number of labeled positive samples in PU settings divide all positive samples in
training samples.



AG AB WA DA DS WS COM CA WAT SH

DeepBlocker 85.69 / 3.67 / 20 75.19 / 3.57 / 20 90.12 / 3.39 / 10 97.21 / 82.49 / 1 90.14 / 18.43 / 10 55.00 / 0.72 / 20 61.59 / 0.80 / 20 60.37 / 0.79 / 20 28.03 / 0.30 / 20 25.86 / 0.27 / 20
Sudowoodo 90.06 / 9.80 / 8 90.37 / 28.73 / 3 90.54 / 8.53 / 4 98.92 / 84.92 / 1 90.24 / 12.30 / 15 53.04 / 0.92 / 20 68.55 / 1.12 / 20 61.96 / 1.01 / 20 26.83 / 0.35 / 20 26.23 / 0.34 / 20
STransformer 91.60 / 15.69 / 5 74.32 / 3.53 / 20 86.38 / 1.63 / 20 97.03 / 82.34 / 1 91.17 / 26.62 / 7 57.39 / 0.65 / 20 52.73 / 0.68 / 20 71.41 / 0.94 / 20 59.08 / 0.77 / 20 49.51 / 0.65 / 20

CLER 90.59 / 21.25 / 4 94.96 / 48.88 / 2 92.14 / 13.47 / 3 98.04 / 84.40 / 1 90.72 / 30.14 / 6 63.68 / 0.91 / 20 74.91 / 1.07 / 20 60.00 / 0.95 / 20 33.21 / 0.47 / 20 30.84 / 0.44 / 20
PUER 95.80 / 27.34 / 3 94.06 / 89.45 / 1 93.76 / 17.65 / 2 99.72 / 84.64 / 1 92.79 / 31.61 / 6 90.35 / 1.39 / 17 90.84 / 2.15 / 11 90.55 / 2.97 / 8 90.49 / 1.68 / 14 90.51 / 1.39 / 17

Table 17: Performance Evaluation. Following UniBlocker (Wang et al., 2024a), we report the first results (in order
of PC/PQ/K, also known as Top-K recall/precision) of baselines when their PC exceeds the threshold (90%). If
both methods have larger PC than the threshold, we evaluate K, otherwise we evaluate their PC. If their K are the
same, we evaluate their PC and PQ.

Dataset Original Attribute Ā Enriched Attribute B̄

Amazon-Google (AG) title, manufacturer, price category, subcategory, platform, edition, type, modelno
Abt-Buy (AB) name, description, price category, sku, brand, modelno, keyfeatures

Walmart-Amazon (WA) title, category, brand, modelno, price subcategory, key-features, sku, color
DBLP-ACM (DA) title, authors, venue, year keywords

DBLP-Scholar (DS) title, authors, venue, year keywords, research-area
Company Description CompanyName,CompanyType,ShortDescription

WDC-All-Small (WS) title category, subcategory, brand, modelno, key-features
WDC-Computer (COM) title category, subcategory, brand, modelno, sku, edition

WDC-Camera (CA) title category, subcategory, brand, modelno, sku, key-features
WDC-Shoes (SH) title category, sku, brand, modelno, colorway, type, edition

WDC-Watch (WAT) title brand, sku, gender, modelno, diameter, type, colorway , price

Table 18: Original and enriched attribute for all datasets

Hyper-Parameter Value Description(Optional)

Backbone model of FEM Qwen-2.5-7B (Yang et al., 2024) Applied for both Enrichment, Matcher and Selector
Backbone Model of FRAG bge-large-en-1.5 (Zhang et al., 2023) Applied for Blocker Membed

Learning Rate for FEM 1e-4
Learning Rate for FRAG 1e-5

τ 0.02 Temperature parameter for contrastive learning of Membed

K 20 Range of default NN search for Blocker, controlled by pointer ptrs, ptre
δ 5 Step length for each iteration of pointer ptrs, ptre
λ 2 iteration of co-training
n 6 number of candidate set for Selector during DPO phase

Max Input Length of FEM 2048
Max Input Length of FRAG 256

Lora-rank 16 Lora-Rank for fine-tune FEM

Training epoch 3 Epoch for fine-tune FEM,FRAG

Table 19: Hyper-Parameter List



Instruction for ptSE

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) Your task is to determine additional attributes for dataset Amazon-Google. By
adding these attributes, you will be leaded to a more clear justification on whether Entity 1 and
Entity 2 are the same entity or not.
(instruction) Your output should be in JSON format, only contain the set of enriched attributes.
You should take the following Incomplete Entity 1 and Entity 2 as reference.
(input)
Entity 1: {’title’: ’motu digital performer dp5 software music production software’, ’manufacturer’:
”, ’price’: 319.95}
Entity 2: {’title’: ’motu digital performer 5 digital audio software competitive upgrade ( mac only
)’, ’manufacturer’: ’motu’, ’price’: 395.0}
(output format) Enriched Attributes:
{Attribute 1:”,Attribute 2:”}

Figure 3: Schema Enrichment Prompt ptSE

Instruction for ptm

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) You are an expert in computer science and database.
Judge whether record Paper 1 from DBLP, and record Paper 2 from Google Scholar are match or
mismatch (refer to the same paper or not), and choose within the given Options.
(input)
Paper 1:
{title: fast algorithms for mining association rules in large databases, authors: R Agrawal, R
Srikant, venue: VLDB, year: 1994, keywords: [association rules, large databases, data mining,
algorithms, Apriori algorithm, FP-growth algorithm]}

Paper 2:
{title: an efficient algorithm for mining association rules in large databases, authors: a savasere , e
omiecinski , s navathe, venue: , year: 1995}
(output format)
Options: [match,mismatch]

Output format example:{Output: }

Figure 4: The Prompt ptm for the Matcher Subtask



Instruction for ptenr

(task description) You are an expert in e-commerce, and you are well known to various goods in Amazon platform.
Enrich Entity 1 and Entity 2 with attributes: category/subcategory/platform/edition/type/modelno.
(instruction) Your output should be in JSON format, only contain the value of enriched attributes. You should take the
following Incomplete Entity 1 and Entity 2 as reference.
(input)

1 Entity 1:{\’title\’: \’microsoft visio standard 2007 version upgrade\’, \’
manufacturer\’: \’microsoft\’, \’price\’: 129.95}\n

2 Entity 2:{\’title\’: \’adobe cs3 design standard upgrade\’, \’manufacturer\’: \’\’,
\’price\’: 413.99}

(output format)

1 {"Entity 1": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""},

2 "Entity 2": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""}}

Figure 3: Data Imputation (Enrichment) Prompt ptenr

Instruction for pts

Task: Entity Matching.
Objective: For the given Entity 1, determine which of the numbered Entity 2 candidates refer to the same real-world
entity.
Instructions for your response:
1. Specify the id of candidates that match Entity 1 within <positive>...</positive> tags, return in list format.
2. Specify the id of candidates that DO NOT match Entity 1 within <negative>...</negative> tags, return in list
format.
3. Ensure all candidate indices are covered in either the positive or negative set.
(input)

1 Entity 1: {’id’: 574, ’title’: ’microsoft mappoint 2006 with gps’, ’manufacturer’
: ’microsoft’, ’price’: 349.0}

Candidate Options:

1 Entity 2 Candidates:
2 {’id’: 3029, ’title’: ’microsoft mappoint 2006 with gps locator ( pc )’, ’

manufacturer’: ’’, ’price’: 349.99}
3 {’id’: 3190, ’title’: ’microsoft ( r ) mappoint ( r ) 2006’, ’manufacturer’: ’’, ’

price’: 249.99}\n
4 {’id’: 2480, ’title’: ’microsoft b21-00806 ae mappoint 2006 cd’, ’manufacturer’: ’’,

’price’: 50.39}
5 {’id’: 1623, ’title’: ’language guide for nuvi 350’, ’manufacturer’: ’’, ’price’:

79.95}
(output format)
<think> · · · </think><positive> [1,2] </positive><negative> [3] </negative>

Figure 4: The Prompt pts for the Selector Subtask

Figure 5: Data Imputation (Enrichment) Prompt ptenr

Instruction for ptenr

(task description) You are an expert in e-commerce, and you are well known to various goods in Amazon platform.
Enrich Entity 1 and Entity 2 with attributes: category/subcategory/platform/edition/type/modelno.
(instruction) Your output should be in JSON format, only contain the value of enriched attributes. You should take the
following Incomplete Entity 1 and Entity 2 as reference.
(input)

1 Entity 1:{\’title\’: \’microsoft visio standard 2007 version upgrade\’, \’
manufacturer\’: \’microsoft\’, \’price\’: 129.95}\n

2 Entity 2:{\’title\’: \’adobe cs3 design standard upgrade\’, \’manufacturer\’: \’\’,
\’price\’: 413.99}

(output format)

1 {"Entity 1": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""},

2 "Entity 2": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""}}

Figure 3: Data Imputation (Enrichment) Prompt ptenr

Instruction for pts

Task: Entity Matching.
Objective: For the given Entity 1, determine which of the numbered Entity 2 candidates refer to the same real-world
entity.
Instructions for your response:
1. Specify the id of candidates that match Entity 1 within <positive>...</positive> tags, return in list format.
2. Specify the id of candidates that DO NOT match Entity 1 within <negative>...</negative> tags, return in list
format.
3. Ensure all candidate indices are covered in either the positive or negative set.
(input)

1 Entity 1: {’id’: 574, ’title’: ’microsoft mappoint 2006 with gps’, ’manufacturer’
: ’microsoft’, ’price’: 349.0}

Candidate Options:

1 Entity 2 Candidates:
2 {’id’: 3029, ’title’: ’microsoft mappoint 2006 with gps locator ( pc )’, ’

manufacturer’: ’’, ’price’: 349.99}
3 {’id’: 3190, ’title’: ’microsoft ( r ) mappoint ( r ) 2006’, ’manufacturer’: ’’, ’

price’: 249.99}\n
4 {’id’: 2480, ’title’: ’microsoft b21-00806 ae mappoint 2006 cd’, ’manufacturer’: ’’,

’price’: 50.39}
5 {’id’: 1623, ’title’: ’language guide for nuvi 350’, ’manufacturer’: ’’, ’price’:

79.95}
(output format)
<think> · · · </think><positive> [1,2] </positive><negative> [3] </negative>

Figure 4: The Prompt pts for the Selector SubtaskFigure 6: The Prompt pts for the Selector Subtask
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(b) Abt-Buy (varying K)
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(c) Walmart-Amazon (varying K)
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(d) DBLP-ACM (varying K)
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(e) DBLP-Scholar (varying K)
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(f) WDC-All-Small (varying K)
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(g) WDC-Computer (varying K)
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(h) WDC-Camera (varying K)
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(i) WDC-Shoes (varying K)
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(j) WDC-Watch (varying K)

Figure 7: Effectiveness evaluation for Blocker vary K. The curve approaching the upper left corner of the figure
indicates better performance
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(b) Abt-Buy (varying PC)
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(c) Walmart-Amazon (varying PC)
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(d) DBLP-ACM (varying PC)
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(e) DBLP-Scholar (varying PC)
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(f) WDC-All-Small (varying PC)
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(g) WDC-Computer (varying PC)
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(h) WDC-Camera (varying PC)
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(i) WDC-Shoes (varying PC)
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(j) WDC-Watch (varying PC)

Figure 8: Effectiveness evaluation for Blocker vary PC(w.r.t. Recall in figure). The curve approaching the lower
right corner of the figure indicates better performance



(a) KL Loss Curve for Actor (b) The curve of estimated KL divergence between old and
new policies for Actor

(c) The curve for fraction of policy gradient loss being
clipped for Actor

(d) Mean reward score curve for Critic

(e) Mean validation reward score curve for Critic

Figure 9: The training curve for Selector model with dataset AG.


