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Abstract

Entity resolution is a fundamental problem in001
data management that aims to identify all dupli-002
cate entries within collections of multi-attribute003
tuples. Most existing works focus on super-004
vised learning, relying on large amounts of005
high-quality labeled data, including both pos-006
itive and negative tuple pairs that are meticu-007
lously prepared. However, in reality, the manual008
annotation process is labor-intensive; in partic-009
ular, selecting high-quality negative data for la-010
beling is both important and challenging. In this011
paper, we propose an end-to-end ER solution,012
PUER, to address low-resource entity resolu-013
tion (ER) by leveraging Large Language Mod-014
els (LLMs) in a Positive-Unlabeled (PU) learn-015
ing setting, where only a small number of posi-016
tively labeled examples, e.g., 50, and unlabeled017
data are provided. Unlike directly fine-tuning018
LLMs in a supervised manner, we solve the en-019
tity matching task using reinforcement learning020
and propose a self-adaptive reward function in021
the process of RL. To enhance performance,022
we design an iterative workflow based on the023
co-training mechanism that fully utilizes entity024
blocking component to assist the entity match-025
ing. This workflow aims to improve the robust-026
ness and quality of pseudo-labels so that the027
performance of entity matching is improved.028
Comprehensive experimental results on various029
benchmark datasets demonstrate the superiority030
of PUER. Full version and code are available1.031

1 Introduction032

Entity resolution (ER) aims to identifying all tuple033

pairs from two relational tables that refer to the034

same entities, making it a key components of data035

cleaning with the goal of deduplicating records in036

datasets. Traditionally, the ER task consists of two037

components, entity blocking (EB) and entity match-038

ing (EM). Entity blocking efficiently retrieves po-039

tentially matched tuple pairs, while entity matching040

1https://anonymous.4open.science/r/
PUER-CB71

verifies whether these tuple pairs refer to the same 041

entities. 042

Traditionally, the entity resolution has been ex- 043

tensively studied and most of solutions reply on 044

a sufficient number of annotated tuple pairs to 045

achieve good performance. However manual an- 046

notation is costly, as demonstrated by methods like 047

Ditto (Li et al., 2020b) and DeepMatcher (Mud- 048

gal et al., 2018). To address it, a few existing EM 049

approaches focus on unsupervised learning, semi- 050

supervised learning and active learning. For in- 051

stance, TDmatch (Ahmadi et al., 2022) is an unsu- 052

pervised ER approach based on graph creation and 053

random walk, while only relying on the data distri- 054

bution cannot have very high accuracy due to the 055

extreme class imbalance. PromptEM (Wang et al., 056

2022) generates pseudo-labels for low-resource ER 057

in the semi-supervised learning. While it partially 058

alleviates the annotation cost, selecting and label- 059

ing high-quality positive and negative tuple pairs 060

from large datasets remains challenging. Active 061

learning approaches, e.g., (Arasu et al., 2010), se- 062

lect ambiguous tuple pairs for user labeling, but 063

this also incurs significant manual annotation costs. 064

In this work, we focus on the few-shot Positive- 065

Unlabeled (PU) learning, where only a small num- 066

ber of labeled positive tuple pairs are provided 067

along with two relational tables. To the best of 068

our knowledge, we are the first to explore the ER 069

task in the few-shot PU learning context. 070

Entity resolution, which typically replies on 071

both positive and negative training data, is partic- 072

ularly relevant to few-shot PU learning (Bekker 073

and Davis, 2020). In practice, only users who 074

detect duplicate issues in their datasets often in- 075

vest resources to find and integrate these dupli- 076

cates, so that these detected duplicates instances 077

are treated as labeled positive data. Negative tuple 078

pairs are generally not provided. Additionally, in 079

a search engine scenario, users might ask a ques- 080

tion and receive multiple semantically identical re- 081
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sponses (Niu et al., 2016). These responses are con-082

sidered positive data. While negative tuple pairs can083

be relatively easy to collect, acquiring high-quality084

negative pairs in large-scale datasets is non-trivial085

and requires manual annotation and verification,086

presenting a challenge for annotators (Wang et al.,087

2024b). Building on these observations, we investi-088

gate the ER task within the framework of few-shot089

PU learning to address these challenges effectively090

with minimal labelling cost, while aligning with091

human preference.092

However, existing ER methods based on pre-093

trained Language Models (e.g., RoBERTa) primar-094

ily learn distribution and decision boundaries from095

large sets of annotated samples. This approach re-096

sults in inefficiencies in labeled data utilization,097

placing these methods at a disadvantage in few-098

shot scenarios. Furthermore, they lack the capa-099

bility to generalize well, and cannot achieve high-100

performance EM tasks based solely on a limited101

number of positive sample annotations. Recently,102

as the advanced performance of large language103

models (LLMs), they have been explored in the en-104

tity matching task. JellyFish (Zhang et al., 2024)105

addresses various data pre-processing tasks, includ-106

ing entity matching, by leveraging LLMs in the107

instruction-tuning and reasoning manner. Table-108

GPT (Li et al., 2024b) employs and fine-tunes on-109

line GPT-3.5 on various data pre-processing tasks.110

Considering the data privacy concerns, we focus111

on using local LLMs that are open-sourced and can112

be fine-tuned in local environments.113

Motivated by the above considerations, we ex-114

plore the ER problem within the framework of few-115

shot PU learning by harnessing the capabilities of116

local LLMs. Our objective is to fully utilize en-117

tity blocking to assist the entity matching process118

and to develop an LLM-based model that can effi-119

ciently and effectively retrieve all matched tuple120

pairs from limited labeled data. Unlike traditional121

methods that treat entity matching purely as a bi-122

nary classification task, our approach is the first to123

formulate entity matching as a reinforcement learn-124

ing problem while simultaneously fine-tuning the125

model using both Supervised Fine-Tuning (SFT)126

and reinforcement learning. Furthermore, to inte-127

grate entity blocking with entity matching, we in-128

troduce an iterative workflow that progressively129

generates high-quality pseudo-labels, facilitating130

mutual learning among these components.131

Our contributions are as follows:132

◦ Beyond binary classification, we are the first to 133

employ reinforcement learning to solve the en- 134

tity matching, and design a self-adaptive reward 135

function to enhance the convergence speed. 136

◦ We propose an end-to-end entity resolution 137

workflow that iteratively make full use of the en- 138

tity blocking model to select high-quality train- 139

ing data and jointly fine-tunes two entity match- 140

ing models through a co-training mechanism. 141

◦ We conduct comprehensive experiments to 142

evaluate the efficiency and effectiveness of our 143

approach, demonstrating its superiority over ex- 144

isting methods. 145

2 Related Work 146

We classify ER into entity blocking and matching. 147

Entity blocking. We classify entity blocking as 148

(1) rules, e.g., handcrafted rules (Papadakis et al., 149

2020, 2014; Fan et al., 2009; Kejriwal and Mi- 150

ranker, 2015), and learned rules (Michelson and 151

Knoblock, 2006; Kejriwal and Miranker, 2015; 152

Singh et al., 2017a; Paulsen et al., 2023), (2) tradi- 153

tional ML, e.g., (C. et al., 2018; Efthymiou et al., 154

2015), and (3) deep learning, e.g., (Thirumuru- 155

ganathan et al., 2021; Brinkmann et al., 2024; Wang 156

et al., 2023; Reimers and Gurevych, 2019; Wu et al., 157

2023; Wang et al., 2024a), which retrieve poten- 158

tially matched tuple pairs from large-scale datasets. 159

Entity matching. There are host of works on en- 160

tity matching, including rule-based methods (Guo 161

et al., 2010; Fan et al., 2011; Whang and Garcia- 162

Molina, 2013; Singh et al., 2017b), ML-based meth- 163

ods (Konda et al., 2016; Bilenko and Mooney, 164

2003; Wu et al., 2020) and deep learning-based 165

methods (Li et al., 2020b; Mudgal et al., 2018; 166

Ebraheem et al., 2018; Zhao and He, 2019; Li et al., 167

2020a; Fu et al., 2019). Recently low resource en- 168

tity matching based on deep learning models has 169

been paid attention, including (1) active learning 170

ER, e.g., (Qian et al., 2017; Meduri et al., 2020; 171

Kasai et al., 2019; Nafa et al., 2022), (2) data aug- 172

mentation ER, e.g.,Rotom (Miao et al., 2021), (3) 173

unsupervised learning ER, e.g., (Zeng et al., 2024; 174

Ahmadi et al., 2022), (4) transfer learning ER, e.g., 175

(Kirielle et al., 2022; Tu et al., 2022; Sun et al., 176

2024; Loster et al., 2021), (5) semi-supervised 177

learning ER, e.g.,PromptEM (Wang et al., 2022), 178

(6) multi-task learning, e.g.,Unicorn (Fan et al., 179

2024a). and (7) information fusion (Yao et al., 180
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2021). There are also works to combine the entity181

blocking and matching models for mutual learn-182

ing, e.g., (Wu et al., 2023; Wang et al., 2023;183

Li et al., 2021), and works by leveraging local184

LLMs (Zhang et al., 2024; Wadhwa et al., 2024)185

and online LLMs (Li et al., 2024b; Wang et al.,186

2025; Li et al., 2024a; Fan et al., 2024b). How-187

ever, none of the above works address few-shot the188

Positive-Unlabeled setting, such that only as small189

number of positive instances are given, which is190

more practical in real-life.191

3 Preliminaries192

In this section, we first present the ER problem, and193

then introduce the entity blocking and matching.194

3.1 Problem Formulation195

Given two relational tables of multi-attribute tu-196

ples, the goal of entity resolution (ER) is to identify197

pairs of tuples that refer to the same entity. The198

ER task generally consists of two main compo-199

nents: entity blocking and entity matching. The200

entity blocking component efficiently retrieves a201

candidate set of potentially matching tuple from202

large tables, thereby avoiding the quadratic time203

complexity of comparing all tuple pairs between204

relational tables. The entity matching component205

then predicts whether tuple pairs in the candidate206

set are matches.207

Definition 1: (ER under the few-shot positive-208

unlabeled setting.) Given two relational tables of209

multi-attribute tuples Rl and Rr, and a set P con-210

sists of a small number of positive tuple pairs, the211

objective of few shot PU entity resolution (ER) is to212

identify all matching tuple pairs from Rl ×Rr. 2213

In this paper, we mainly focus on addressing214

entity matching task of ER. We fully utilize existing215

entity blocking techniques to enhance the efficiency216

and effectiveness of the matching process.217

3.2 Entity Resolution218

Following previous work (Wu et al., 2023), we219

decompose entity resolution into entity blocking220

and entity matching.221

Entity blocking. The entity blocking Blocker, pri-222

marily utilizes the SentenceBert model, denoted223

as FRAG, to transform each tuple t into an embed-224

ding vector (Thirumuruganathan et al., 2021; Wang225

et al., 2023; Wu et al., 2023; Li et al., 2020b). Given226

the training data (t,Pt,Nt), where Pt and Nt rep- 227

resent the positive and negative sets of tuples that 228

match and mismatch with t, we fine-tune FRAG via 229

contrastive learning (Oord et al., 2018). 230

Entity matching. Previous work (Wang et al., 231

2025) formulates the entity matching into two sub- 232

tasks: Matcher FM
EM and Selector FS

EM. 233

Matcher. Given a tuple pair (t, s) and a domain- 234

specific prompt ptm as EM instruction, we could 235

query LLM to transform (t, s) to a binary decision 236

pm ∈ {Yes,No}, s.t. pm = LLM(ptm, (r, si)). 237

The Matcher FM
EM is consistent with all existing 238

entity matching works, e.g.,JellyFish (Zhang et al., 239

2024), Ditto (Li et al., 2020b), aiming to identify- 240

ing whether a tuple pair is matched or not. Matcher 241

is supervised fine-tuned (SFT) with LoRA and 242

aims to provide domain-specific decision boundary. 243

Selector. Selector takes a pivotal tuple t, a list of 244

candidate tuples Cs(t) = {s1, . . . , s|Cs|}, and a 245

prompt pts as inputs, and outputs a list of positive 246

ones in Cs(t). It lets LLMs check more examples 247

so that they make correct decision. Selector targets 248

at re-ranking Cs by simulating human preference. 249

The Matcher subtask is mainly used in most EM 250

approaches, e.g.,JellyFish, while Selector has not 251

been as extensively studied. Although (Wang et al., 252

2025) introduced it to address the EM, they did not 253

further fine-tune it to improve its performance. 254

4 RL-based Entity Matching 255

As discussed above, the entity matching task is 256

formulated as two sub-tasks, Matcher FM
EM and 257

Selector FS
EM. In this section, we focus on how to 258

fine-tune the Selector to make policies from a list 259

of candidate tuples. Here we assume that FS
EM is 260

fine-tuned using a (pseudo-)labeled training dataset 261

DS
train = {(t, Cs(t),Lt)}, where Lt is the label of 262

the pivotal tuple t. The process of generating DS
train 263

will be discussed in Section 5. 264

RL-based Selector. To select matching tuples from 265

a pivotal tuple, we employ the Group Relative 266

Policy Optimization (GRPO) (DeepSeek-AI et al., 267

2025) to fine-tune the Selector so that it can bet- 268

ter adapt to the dynamic changes and improve its 269

accuracy. However, the number of positive tuples 270

in the candidate list is very small, resulting in a 271

continuously low reward value during the learning 272

process of GRPO. To address this issue, we design 273

a self-adaptive reward model. 274
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GRPO. Given each pivotal tuple t from DS
train275

that follows the distribution P , we adopt276

GRPO (DeepSeek-AI et al., 2025) with the fol-277

lowing loss function.278

JGRPO = E[t ∼ P (DS
train), {oi}Gi=1 ∼ πθold(O|t)]279

1

G

G∑
i=1

(
min

(
πθ(oi|t)
πθold(oi|t)

Ai, clip

(
πθ(oi|t)
πθold(oi|t)

,280

1− ϵ, 1 + ϵ

)
Ai

)
− ηDKL(πθ||πref)

)
281

where Ai is the advantage function computed282

within a group of rewards. The Selector FS
EM is283

fine-tuned in two stages. First, to address the cold284

start problem, we initialize FS
EM using SFT, which285

enables it to adapt to the selection task. Subse-286

quently, FS
EM is further fine-tuned using GRPO287

with the JGRPO loss function.288

Input and Output Formats of FS
EM. Given a hand-289

crafted instruction pts, a tuple t, and a candidate list290

Cs(t), we first formulate them into a final prompt291

following (Wang et al., 2025). We then feed this292

prompt into the function FS
EM. Then FS

EM subse-293

quently produces the response r.294

r = <positive>[ ... ]</positive><negative>[ ... ]</negative>295

Here, the lists of positive and negative tuple296

IDs from Cs(t) are enclosed within the markers297

<positive> and <negative>, respectively. Here no-298

tice that we also let FS
EM return negative tuples to299

make sure that it also focuses on negative ones.300

Self-adaptive Reward Function. Given a tuple t,301

the candidates Cs(t), and the label vector Lt, we302

design a reward function R that returns a scalar303

reward value for RL, where Lt ∈ {0, 1}|Cs(t)| is a304

binary vector indicating whether each candidate in305

Cs(t), e.g., the i-th element in Cs(t), is a true match306

(Lt[i] = 1) or not (Lt[i] = 0). The reward function307

R contains the following steps.308

309 (1) Step 1: Answer Extraction. We handcraft the310

regular expression to extract the list Lpos of positive311

tuple IDs and the list Lneg of negative ones from the312

response r of FS
EM. We return a zero reward if Lpos313

or Lneg cannot be parsed successfully from r, if the314

tuple IDs in Lpos or Lneg are not within the range315

[1, |Cs(t)|], or if |Lpos|+ |Lneg| ≠ |Cs(t)|. In other316

words, the answer extracted from the response must317

be valid. If this condition is met, we proceed to Step318

2; otherwise, a zero reward is returned.319

320

Input: a collection of training data DS
train = {(t, Cs(t),Lt)},

the number of iteration itermax, the smoothing factor α.
Output: the policy πEM.
1. Split DS

train into training data DS
train and validation data DS

valid;
2. SFT FS

EM in DS
train as the cold start.

3. iter := 0, w
(0)
pos = 1, w

(0)
neg = 1;

4. while iter ≤ itermax do
5. The reward R = Hw(Pt,Lt, w

(iter)
pos , w

(iter)
neg );

6. Fine-tune FS
EM in DS

train with GRPO using the reward R;
7. Compute the prediction Pvalid = FS

EM(DS
valid);

8. Compute FN and FN by comparing Pvalid and Lvalid;
9. wpos =

FP+ϵ
FN+FP+ϵ

, wneg =
FN+ϵ

FN+FP+ϵ
;

10. w
(iter+1)
pos := (1− α)w

(iter)
pos + αwpos;

11. w
(iter+1)
neg := (1− α)w

(iter)
neg + αwneg;

12. iter := iter + 1;
13. return FS

EM;

Figure 1: RL-based Selector

(2) Step 2: Similarity reward computation. Intu- 321

itively, we aim to measure the similarity between 322

the answer and the ground truth. Hamming similar- 323

ity is a good option. 324

R(t, Cs(t),Lt) = H
(
Enc(Lpos, Lneg),Lt

)
325

where Enc is a handcrafted encoding function 326

that transforms Lpos and Lneg into a binary vec- 327

tor Pt of the same dimension as Lt. H repre- 328

sents the Hamming similarity, s.t. H(Pt,Lt) = 329∑|Cs(t)|
i=1 1Pt[i]=Lt[i]

|Cs(t)| . A higher H(Pt,Lt) indicates 330

better performance of FS
EM, while a lower value 331

suggests suboptimal performance. 332

However, directly using H has the following 333

drawbacks. First, the ratio of positive tuples in Cs 334

is very small, and the rewards from negative tuples 335

would dominate the exploration process, causing 336

the feedback from the reward function to remain 337

at a very low value. Second, the goal of entity 338

matching is to reduce both false positives (FPs) 339

and false negatives (FNs). When the number of 340

FPs increases, we expect FS
EM to focus on reducing 341

FPs; otherwise, it should focus on reducing FNs. 342

The current H does not encourage this behavior in 343

FS
EM, causing it to spend a large number of itera- 344

tions exploring unseen regions. 345

To address these issues, we design a weighted 346

Hamming similarity Hw: 347

Hw(Pt,Lt, wpos, wneg) = 348∑|Cs(t)|
i=1 1Pt[i]=Lt[i]=1wpos + 1Pt[i]=Lt[i]=0wneg∑|Cs(t)|

i=1 1Lt[i]=1wpos + 1Lt[i]=0wneg

349

For the positive tuples in Lt, we assign a weight 350

wpos, and for the negative tuples, we assign a 351
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weight wneg. By integrating these weights into the352

reward function, FS
EM is more inclined to focus on353

one side, i.e., either positive or negative data.354

The final problem is how to set the values of355

wpos and wneg. Our idea is that if FS
EM has an in-356

creasing number of false positives, we should in-357

crease the value of wpos so that GRPO focuses on358

reducing the false positives. Otherwise, we encour-359

age GRPO to find true positives from the negative360

tuples. To achieve this, we split DS
train into vali-361

dation data DS
valid and compute the false positives362

(FPs) and false negatives (FNs) in each iteration.363

Let w(i)
pos and w

(i)
neg be the weights for the i-th iter-364

ation. We use FS
EM to make predictions Pvalid on365

DS
valid, and then compute FPs and FNs. The current366

weights wpos and wneg are set to the percentages367

of FPs and FNs, respectively. However, resetting368

these weights in each iteration would lead to an un-369

stable reward function. To gradually change these370

values, we introduce a smoothness factor α to up-371

date the weights with small adjustments. Specifi-372

cally, we set w(i+1)
pos := (1− α)w

(i)
pos + αwpos and373

w
(i+1)
neg := (1− α)w

(i)
neg + αwneg.374

To further reinforce the impact of positive tuples375

in Lt, we incorporate semantic similarity into the376

reward function as prior knowledge. This guides377

the RL process to find a good direction. Our final378

reward is as follow.379

R(t, Cs(t),Lt) =Hw(Pt,Lt, wpos, wneg)+380

β · 1

|S|
∑
s∈S

Simcos(vec(t), vec(s))381

where β is a hyper-parameter and 0.2 by default, S382

is the set of true positives in the prediction of FS
EM,383

Simcos is the cosine similarity between two vectors,384

and vec() is the embedding returned by FRAG.385

Figure 1 illustrates the RL process of FS
EM. In386

addition to DS
train, the number of iterations itermax387

and the smoothing factor α are added as inputs.388

Initially, we set w(0)
pos and w

(0)
neg to 1, indicating the389

normal Hamming similarity (line 3). In each iter-390

ation, we re-formulate the reward function using391

Hw (line 5) and fine-tune FS
EM using GRPO with392

the reward function R (line 6). We then update the393

weights of positive and negative tuples using the394

gradual update rules (lines 7-11).395

5 An ER Workflow396

In this section, we present an ER workflow to train397

the entity matching models FEM with the assistance398

of an entity blocking model FRAG. The workflow 399

takes as input two relational tables, Rl and Rr, and 400

a set P of positive tuple pairs. As shown in Figure 2, 401

the workflow consists of three main steps: data 402

enrichment, entity blocking, and entity matching. 403

Step 1: Data enrichment. Enriching tuples in Rl 404

and Rr with additional attributes, denoted as B̄, 405

is a common and effective method. Due to the un- 406

certainty (Farquhar et al., 2024) inherent in LLMs, 407

we observe that the values of B̄ imputed for a 408

tuple can vary depending on its paired tuples 409

(w.r.t. context). For each tuple t ∈ Rl and a set 410

St ⊂ Rr, we generate |St| tuple pairs, i.e., Pt = 411

{(t, s1), . . . , (t, s|St|)}, where si ∈ St. Given each 412

pair (t, si) ∈ Pt, we query the LLM to impute the 413

values of B̄ as ai = LLM((t, si), B̄, ptenr). Due to 414

LLM uncertainty, the imputed values a1, . . . , a|Pt| 415

may differ across pairs. To leverage these varia- 416

tions, we enumerate all imputations and augment 417

each tuple pair with multiple enriched versions. 418

Step 2: Entity Blocking. After data enrichment, 419

we enrich the positive set P into an augmented set 420

Penr. We then fine-tune our entity blocking model 421

FRAG using contrastive learning with a randomly 422

sampled negative set, following the approach in 423

(Wang et al., 2024a). The final output of this step 424

is the fine-tuned FRAG. 425

Step 3: An iterative EM workflow. Given FRAG, 426

Penr, Rl and Rr, we propose a progressive training 427

workflow that fine-tunes FM
EM and FS

EM. 428

Overview. We show the EM workflow. Given a tu- 429

ple t ∈ Rl, FRAG conducts similarity search by 430

retrieving its K nearest neighbors NNK(t), which 431

forms the candidate list for t. We define two point- 432

ers: ptrs and ptre, where ptrs indicates the bound- 433

ary separating positive tuples from the rest, such 434

that all tuples in the range [1, ptrs] are considered 435

positive, while tuples in the range [ptre,K] are con- 436

sidered negative. Specifically, (t,NNK(t)[i]) are 437

treated as positive tuple pairs for i ∈ [1, ptrs] and 438

(t,NNK(t)[j]) are negative ones for j ∈ [ptre,K]. 439

[ptrs, ptre] are ambiguous pairs. 440

In the beginning of the training procedure, ptrs 441

is set to 1 and ptre is set to K, and FRAG gener- 442

ates the potentially positive and negative tuple pairs 443

PRAG and NRAG within [1, ptrs] and [ptre,K], re- 444

spectively. Next FRAG sends them to FEM, which 445

processes them using the co-training strategy. In 446

the next iteration, FRAG retrieves the new NNK(t) 447

for each tuple t and adjust ptrs and ptre by a step 448
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Figure 2: The end-to-end entity resolution workflow

size δ, updating the pointers as ptrs = ptrs+ δ and449

ptre = ptre − δ. The iterative process continues450

until ptrs is no longer less than ptre.451

Co-training strategy. Given potentially positive452

tuple pairs PRAG and negative tuple pairs NRAG,453

and the augmented set Penr, we simultaneously454

learn Matcher FM
EM and Selector FS

EM. Consider-455

ing the extremely low ratio of positive to negative456

tuple pairs in Rl and Rr, and the fact that existing457

methods, e.g., (Thirumuruganathan et al., 2021),458

reply on random sampling for negative tuple pairs,459

we assume that NRAG are more likely to be correct460

in the first few iteration. Thus, we introduce a461

warmup period during which NRAG are initially462

treated as ground truth negatives and combined463

with Penr to fine-tune FM
EM for the first λ iterations.464

As ptre approaches ptrs after λ iterations, FM
EM is465

then responsible for selecting which negative tuple466

pairs should be included in the training data.467

Specifically, we design a two-phase learning468

method to simultaneously train FM
EM and FS

EM.469

470 Phase 1. In the first phase, we add Penr into the471

training data Dtrain. If the current iteration is less472

than λ, we generate the training data Dtrain as473

Dtrain = Penr ∪NRAG. For iterations beyond λ, we474

have a checker step by using FM
EM to verify whether475

the labels of tuple pairs in NRAG are consistent476

with its predictions, The training data Dtrain is then477

updated to Dtrain = Penr ∪ {(t, s)|FM
EM(t, s) =478

No, (t, s) ∈ NRAG}.479

After generating Dtrain, we proceed to gener-480

ate the training data DS
train for the Selector. For481

each pivot tuple t, we retrieve all tuple pairs482

(t, s1), . . . , (t, sL) from Dtrain where t appears on483

the left-hand side of the tuple pairs. We then de-484

fine Cs(t) = {s1, . . . , sL}, and the label Lt is an485

L-dimensional vector, where Lt[i] = 1 if (t, si) is486

a matched tuple, and Lt[i] = 0 otherwise. We gen-487

erate a triplet (t, Cs(t),Lt) as an element of DS
train. 488

Finally, we fine-tune FM
EM using SFT on Dtrain and 489

FS
EM using GRPO on DS

train, respectively. 490

491Phase 2. Once FS
EM and FM

RM are well fine-tuned, 492

we adopt FS
EM to generate more positive training 493

data with pseudo-labels. For each tuple t ∈ Rl, 494

we first generate m augmented tuples, denoted by 495

t1, . . . , tm, and query FS
EM with the list Cs(ti) for 496

ti for i ∈ [1,m]. This process yields m lists of pos- 497

itive tuples R1, . . . , Rm. To enhance the accuracy 498

of these positive instances, we use FM
EM to make 499

inferences, obtaining additional positive training 500

data as ∆P = {(t, s)|FM
EM(t, s) = Yes, (t, s) ∈ 501

R1 ∪ · · · ∪Rm}. Finally, we incorporate ∆P into 502

Dtrain, and FM
EM is continuously fine-tuned using 503

SFT to further enhance its performance. 504

6 Experimental Results 505

In this section, we empirically evaluated our 506

method, PUER using benchmark datasets on (1) 507

the effectiveness and efficiency of entity matching, 508

(2) the ablation study, and (3) a comparative anal- 509

ysis with online LLMs, particular ComEM (Wang 510

et al., 2025) with GPT-4o-mini. More experimental 511

results are provided in the supplemental material. 512

Experimental settings. We start with our settings. 513

Datasets. We conducted experiments using 11 514

benchmark datasets from the ER Benchmark 515

datasets (Köpcke et al., 2010), the Magellan data 516

repository (The Magellan Data Repository) and 517

WDC product data corpus (Primpeli et al., 2019) 518

used for evaluating Ditto (Li et al., 2020b), These 519

datasets include Amazon-Google (AG), Walmart- 520

Amazon (WA), Abt-Buy (AB), DBLP-ACM (DA), 521

DBLP-Scholar (DS), Company (CO), Cameras 522

(CA), Computers (COM), Shoes (SH), Watch 523

(WAT) and WDC-All-Small (WS). Following 524

6



Ditto, we randomly sample 50 positive tuple pairs525

as labeled training data and retained the left and526

right relational tables as all unlabeled data. The527

statistics of all datasets are summarized in the sup-528

plementary material.529

Baselines. We implemented PUER in Python and530

used the following baselines. (1) Ditto (Li et al.,531

2020b), an entity matching model based on BERT;532

(2) Rotom (Miao et al., 2021), an entity match-533

ing model leveraging language models and data534

augmentation through reinforcement learning; (3)535

PromptEM (Wang et al., 2022), a prompt-tuning536

model based on pretrained language models; (4)537

Unicorn (Fan et al., 2024a), a multi-task data538

matching model using a mixture of experts; (5)539

CLER (Wu et al., 2023), a low-resource entity res-540

olution model that integrates entity blocking and541

matching; (6) JellyFish (Zhang et al., 2024), an542

LLM based entity matching model using LoRA-543

based instruction-tuning. We also compared with544

the following online LLMs: (7) BatchER (Fan545

et al., 2024b), a cost-effective batch prompting to546

ER based on online LLMs, and (8) ComEM (Wang547

et al., 2025), an LLM-based ER model using548

Matcher, Comparer and Selecter operations.549

For a fair comparison, all baselines are provided550

with the same set of 50 positive tuple pairs (denoted551

as P), all labeled negative pairs from the training552

set of the benchmark, and the same relational left553

and right tables. In contrast, PUER is provided with554

P and relational left and right tables but without555

the labeled negative pairs, representing a few-shot556

PU (positive-unlabeled) setting. Notably, Unicorn,557

and JellyFish were also pretrained on additional558

labeled entity matching corpus.559

Measures. We report precision (P), recall (R) and560

F1 (F) score for entity matching following (Li et al.,561

2020b). All results are reported in 100-scale.562

Configuration. We select Qwen-2.5-7B-563

instruct (Yang et al., 2024) as the backbone564

of for FEM and bge-large-en as the pre-565

trained model for FRAG. We set K as 20, δ as566

5,and τ = 0.02 by default and adopt the AdamW567

optimizer with the learning rate of 1e-4 and 1e-5568

for FM
EM and FRAG, respectively. In GRPO of FS

EM,569

we set the training batch size as 16, the length of570

input prompt as 1024, the maximum output length571

as 64, the mini-batch as 16, the learning rate of572

the actor model as 1e-6, and the coefficient η of573

KL loss as 0.001. We adopt verl (Sheng et al.,574

2025), a RL training framework to fine-tune FS
EM 575

and remains other hyper-parameters by default. 576

For all baselines, we use their default settings. 577

We conduct our experiment on a single machine 578

powered by 1.5TB RAM and 128 processors with 579

Intel(R) Xeon(R) Platinum 8358 CPU @2.60GHz 580

and 4 NVIDIA A800 GPUs. Each experiment was 581

conducted twice, averaging the results reported 582

here. 583

Experimental results. We next report our findings. 584

Exp-1: Entity matching. We evaluate the effec- 585

tiveness of PUER in comparison to other base- 586

lines with aspect to entity matching. Table 1 shows 587

the performance of all baselines. PUER consis- 588

tently outperforms all other baselines across all 589

11 datasets in terms of precision, recall and F1- 590

score, achieving average improvements of 22.95%, 591

38.16% and 38.73%, respectively, and up to 592

63.85%, 47.63% and 52.29%. This verifies that 593

the co-training strategy between FS
EM and FM

EM 594

and interaction between FEM and FRAG are ef- 595

fective, where the Selector and the RAG blocker 596

enhance the performance of the entity matching 597

component. Furthermore, PUER exhibits greater 598

robustness compared to other baselines and is less 599

not sensitive with data distribution. Specifically, 600

PUER shows superior performance in 10 out of 11 601

datasets in terms of F1-score, e.g., at most 25.20%, 602

14.45% and 52.12% F1-score improvement in WS, 603

DS and Company dataset across different domains. 604

This highlights the stability of PUER and its effec- 605

tiveness independent of specific data distribution. 606

Compared with pre-trained baselines, PUER 607

also outperforms JellyFish, an LLM-based entity 608

matching model using handcraft prompts and 609

LoRA tuning, e.g., 15.51% F1-score improvement 610

on average. This underscores the effectiveness of 611

our end-to-end iterative framework. While Unicorn 612

achieves relatively good performance among the 613

baselines due to its mixture-of-expert architecture, 614

it struggles to attain high recall because of the small 615

set of positive instances. 616

To evaluate the ER framework that integrates 617

entity blocking and matching, we compare with 618

CLER in Table 2. PUER is 10.85%, 29.73% and 619

23.63% more accuracy in aspects of precision, re- 620

call and F1-score than CLER on average, which 621

indicates that the proposed workflow that interacts 622

FRAG and FEM could be beneficial to both of them. 623

In Table 2, we compared PUER with the online 624
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Datasets PUER (Ours) Ditto Rotom Unicorn PromptEM JellyFish
P R F P R F P R F P R F P R F P R F

AG 84.83 76.49 80.45 39.28 4.70 8.39 19.50 59.01 29.30 90.66 11.53 20.14 64.62 17.95 28.09 92.03 44.44 59.94
WA 93.95 88.60 91.20 78.43 20.72 32.78 11.80 73.10 20.30 89.99 60.62 72.44 93.55 30.05 45.49 80.09 93.78 86.39
AB 90.04 87.86 88.94 97.24 51.45 67.3 14.60 42.70 21.70 97.11 49.02 65.16 98.04 48.54 64.94 99.38 78.15 87.5
DA 95.47 99.77 97.57 99.5 89.63 94.31 80.9 97.1 88.2 99.29 95.27 97.24 100 86.04 92.49 99.76 97.07 98.40
DS 99.31 94.85 97.03 98.2 30.65 46.72 65.6 94.7 77.5 98.81 70.18 82.07 98.73 58.04 73.1 99.7 64.01 77.97
CO 98.56 79.18 87.82 25.06 100 40.08 n/a n/a n/a 87.49 3.84 7.37 n/a n/a n/a 96.43 22.07 35.92

CA 93.20 100.00 96.48 70.53 27.43 39.5 40.1 35.8 37.8 96.29 36.11 52.52 89.02 25.35 39.46 96.07 68.05 79.67
COM 98.67 99.33 99.00 65.64 28.76 39.99 29.3 50.2 37 92.82 69.23 79.31 80.57 74.58 77.57 97.5 78.26 86.82

SH 98.48 88.13 93.02 74.7 43.05 54.62 26.7 55.9 36.1 80.47 58.64 67.84 50.00 1.00 1.97 94.44 51.86 66.95
WAT 97.89 85.03 91.01 27.36 27.09 27.22 26.9 65.9 38.2 93.71 49.83 65.06 42.86 1.00 1.96 89.45 77.37 82.97
WS 87.67 95.57 91.45 71.89 20.28 31.64 27.4 75.00 40.2 95.97 43.73 60.09 91.55 28.05 42.94 96.64 52.92 68.39

Average 94.37 90.43 92.17 67.98 40.34 43.87 31.16 59.04 38.75 92.96 49.82 60.84 73.54 51.69 42.55 94.68 66.18 75.54

Table 1: Entity matching performance in comparison to baselines, n/a means the method cannot be terminated within 10 hours

Methods/Model AB AG DA DS WA

PUER (Ours) 88.94 80.45 97.57 97.03 91.20
CLER 75.86 47.56 80.04 55.96 70.02

BatchER (GPT-4) 85.22 64.06 96.04 89.48 81.22
ComEM (GPT-3.5-turbo) 87.62 69.63 90.85 84.68 86.37
ComEM (GPT-4o-mini) 88.24 71.47 90.58 87.84 88.56

Table 2: Comparison with Online Model (F1-score)

Datasets AG AB WA
Train Predict Train Predict Train Predict

Ditto 235 23 208 20 215 22
Rotom 522 23 435 20 487 23
Unicorn 725 17 602 13 654 14

PromptEM 1420 65 1533 42 1365 55
JellyFish 1243 45 1010 30 1190 42

PUER (Ours) 3561 208 4323 255 4555 339

Table 3: The Efficiency of Entity Matching (in seconds)

BatchER (Fan et al., 2024b) and ComEM (Wang625

et al., 2025) using GPT-3.5, GPT-4 and GPT-4o-626

mini as the backbones. The result shows that PUER627

achieves up to 15.5% higher F1-score, indicating628

the effectiveness of the fine-tuning workflow.629

Methods AG WA AB
P R F P R F P R F

PUER 84.83 76.49 80.45 93.95 88.60 91.20 90.04 87.86 88.94

w.o. Selector 33.43 97.86 49.83 11.42 100.00 20.51 42.20 94.66 58.38
w.o. enrich 65.92 76.06 70.63 81.42 88.60 84.86 88.62 90.77 89.68

w.o. co-train 63.66 84.61 72.66 75.73 93.78 83.79 85.30 87.37 86.33

Table 4: Ablation Study for Entity Matching

Exp-2: Efficiency of entity matching. We present630

the fine-tuning time (Train) and inference time (Pre-631

dict) of FEM in Table 3. Since FEM employs co-632

training of the Selector and Matcher, as well as633

an iterative workflow to gradually generate more634

training data with pseudo-labels, PUER requires635

significantly more time to fine-tune its entity match-636

ing models and perform inferences compared to637

other methods. Although PUER is notably slower,638

its high accuracy in entity matching, as shown in639

Table 1, justifies the use of reinforcement learning640

(RL) and co-training strategy despite the increased641

computational cost.642

Exp-3: Ablation study. In Table 4, we present the643

ablation study of PUER and its variants, namely644

PUER without the Selector, without enrichment,645

Dataset Methods |P| =10 20 30 40 50 100

AB
PUER 55.15 74.01 73.11 79.49 88.92 89.26
Unicorn 48.17 49.08 59.66 71.42 65.16 84.57
DITTO 17.39 21.58 34.04 45.66 67.3 82.35

WS
PUER 65.82 68.96 65.01 82.29 91.45 92.12
Unicorn 23.12 35.02 65.22 54.24 40.20 70.19
DITTO 13.25 20.57 27.45 35.69 31.64 66.10

Table 5: Performance Vary Labelling Budget |P| (F1)

without co-training, i.e., without the Matcher. The 646

results demonstrate that each variant achieves lower 647

accuracy compared to the complete PUER model. 648

Specifically, PUER without enrichment and 649

without the Matcher shows only a relatively small 650

performance drop. This suggests that large lan- 651

guage models (LLMs) already possess substan- 652

tial prior knowledge, and the Matcher does not 653

contribute much in the few-shot data setting. In 654

contrast, PUER without the Selector experiences 655

a significant drop in accuracy, such as a 31% de- 656

crease on the AG dataset. This finding indicates 657

that the reinforcement learning (RL) component in 658

the Selector plays a crucial role in generalization, 659

particularly in few-shot scenarios. It enables the 660

model to collect sufficient data from the environ- 661

ment to achieve robust performance. 662

Exp-3: Hyper-parameter study. We vary the 663

labeling budget |P| from 10 to 50 in Table 5. 664

PUER demonstrates robustness with respect to the 665

number of positive tuples, e.g., only 6.9% drop 666

when |P| decreases from 50 to 10 in WS. 667

7 Conclusion 668

In this paper, we propose, PUER, an end-to-end 669

ER solution for few-shot PU learning. We adopt 670

the reinforcement learning method to solve the en- 671

tity matching task, and design a self-adaptive re- 672

ward function. Furthermore, we introduce an itera- 673

tive training workflow that fully utilizes the entity 674

blocking model to assist the entity matching via 675

a co-training mechanism. Finally comprehensive 676

experiments across 11 benchmarks demonstrate the 677

superior performance of PUER. 678
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Limitations679

Our work, PUER, introduces an end-to-end entity680

resolution solution tailored for few-shot positive-681

unlabeled (PU) learning scenarios by leveraging682

Large Language Models (LLMs) and reinforce-683

ment learning. We propose an iterative co-training684

mechanism that integrates entity blocking and en-685

tity matching, including a novel self-adaptive re-686

ward function for the reinforcement learning com-687

ponent, to enhance performance with minimal la-688

beled positive data.689

Despite the promising results, our approach has690

several limitations. Firstly, the reinforcement learn-691

ing (RL) component, particularly the Selector fine-692

tuned with Group Relative Policy Optimization693

(GRPO), inherently introduces a higher level of694

complexity in terms of training and hyperparame-695

ter tuning compared to simpler supervised methods.696

Secondly, while LLMs offer powerful generative697

capabilities, the quality and consistency of the gen-698

erated outputs (e.g., enriched attributes or pseudo-699

labels) can be uncertain and may occasionally re-700

quire careful validation. Lastly, as indicated by our701

efficiency experiments, the proposed PUER frame-702

work, with its iterative workflow and co-training703

of multiple components including RL-based Selec-704

tor and Matcher, exhibits a higher computational705

complexity during both training and inference com-706

pared to some traditional entity resolution methods.707

This increased cost is a trade-off for the achieved708

accuracy in low-resource settings.709

Ethics Statement710

The experiments were conducted on publicly avail-711

able benchmark datasets and models, eliminating712

any data privacy concerns. To the best of our knowl-713

edge, there is no negative societal impact in this714

research.715
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A Overview1023

In the supplementary material, we mainly provide1024

(1) a running example of entity resolution; (2) an1025

example of data enrichment using LLMs along with1026

our observation; (3) detailed hyper-parameter con-1027

figurations used in our experiment; (4) the notation1028

table from our full paper; (5) comprehensive de-1029

scriptions of the datasets used in our experiments;1030

(6) experimental results for entity blocking across1031

all datasets, comparing with other baselines in var-1032

ious settings; (7) a detailed comparison with on-1033

line model, e.g., ChatGPT, under different parame-1034

ter size for LLMs, and (8) detailed information of1035

prompts used in PUER.1036

B Examples of Entity Resolution1037

We present an example of entity resolution in Ta-1038

ble 7 (left table, denoted as Rl) and Table 8 (right1039

table, denoted as Rr). Both tables contain multiple1040

tuples with three fundamental attributes, specif-1041

ically Ā = {Manufacturer, price, title}. Among1042

these, the pairs l1162 and r2109, as well as l587 and1043

r2816, represent the same real-world entities. The1044

objective of the entity resolution task is to effi-1045

ciently and effectively identify all matching tuple1046

pairs between Rl and Rr.1047

C Examples of Data Enrichment1048

C.1 Schema Enrichment1049

In Table 9 and Table 10, we first use1050

LLMs to enrich the data with 6 addi-1051

tional attributes, denoted as B̄, where B̄ =1052

{category, subcategory, platform, edition, type,1053

modelno}. We then query LLMs for each tuple1054

using the attributes in B̄. The values of the columns1055

highlighted in blue are imputed by LLMs. These1056

imputed values provide PUER more valuable1057

information to identify matched tuple pairs.1058

C.2 Our Observation1059

In Table 9, we demonstrate that l1162 is imputed1060

with different values for B̄, specifically l11162 and1061

l31162, depending on whether it is paired with r21091062

or r2816 (in Table 10). Based on these observations,1063

we can enhance the data quality of training data1064

in our Positive-Unlabeled (PU) setting. Such pair-1065

wise enrich problem can activate the ability of1066

LLM generating different information from various1067

perspective and context.1068

D Hyper-parameter Configuration 1069

Please check Table 15 for detailed hyper-parameter 1070

configuration and corresponding explanations. Our 1071

code is available at https://anonymous. 1072

4open.science/r/PUER-CB71. 1073

We apply LLaMA-Factory (Zheng et al., 2024) 1074

for training, and apply vLLM (Kwon et al., 2023) 1075

for efficient inference. We use verl (Sheng et al., 1076

2025) for training RL-based Selector. To stabilize 1077

the output result for Matcher and Selector, during 1078

inference with vLLM, for querying LLM, we set the 1079

temperature to 0, and top-p to 1 for deterministic 1080

output. 1081

We also incorporate outlines (Willard and Louf, 1082

2023) to fix the output of LLMs to JSON format. 1083

E Notation Table 1084

In Table 11, we provide notation table and their 1085

corresponding descriptions. 1086

F The dataset descriptions 1087

In Table 12, we provide descriptions of all bench- 1088

mark datasets used in this paper. Following our PU 1089

learning setting, for each dataset we only use 50 1090

random sampled positive samples for PUER. 1091

◦ The column # Dataset lists all datasets used in 1092

this paper along with their abbreviation. For the 1093

WDC dataset (w.r.t. WS, COM, CA, SH, WAT), 1094

we sampled 50 positive tuple pairs within the 1095

small size (1/20 of all pairs, following (Mudgal 1096

et al., 2018; Li et al., 2020b)) of each dataset. 1097

◦ The column # All provides the total number of 1098

labeled examples for each dataset, and the col- 1099

umn Match specifies the number of matched 1100

examples for each dataset, including the train/- 1101

valid/test splits. 1102

◦ The column # of Original Attr shows the number 1103

of attributes in each original dataset, and the 1104

column # of Enriched Attr displays the number 1105

of attributes for enrichment by PUER, i.e., |Ā|+ 1106

|B̄|. A detailed example for dataset is provided 1107

in Figure 9 and 10. 1108

◦ The column # of |Rl|, |Rr| indicates the sizes 1109

of left and right tables for each dataset, respec- 1110

tively. 1111

◦ The column Proportion of PU represents the ra- 1112

tio of PU positive sample(e.g., 50) to all labeled 1113

training samples in benchmark datasets, while 1114
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Methods/Model AB AG DA DS WA Avg

PUER (Qwen-2.5-7B) w.o. SFT 39.41 66.81 89.25 77.04 49.62 64.43

PUER (Qwen-2.5-0.5B) 12.54 17.40 99.32 96.32 14.80 48.08
PUER (Qwen-2.5-1.5B) 73.03 81.00 96.08 97.72 50.19 79.60
PUER (Qwen-2.5-3B) 82.72 79.30 95.95 97.70 87.07 88.55
PUER (Qwen-2.5-7B) 88.94 80.45 97.57 97.03 91.20 91.04

ComEM (Mistral-7B) 40.70 37.77 24.68 28.89 55.96 37.60
ComEM (Qwen2-7B) 72.39 61.03 81.49 76.57 72.96 72.89
ComEM (LLAMA3-8B) 74.37 49.50 78.91 68.79 42.33 62.78
ComEM (Mixtral-8×7B) 77.67 34.76 67.20 60.09 50.57 58.06

BatchER (GPT-4) 85.22 64.06 96.04 89.48 81.22 83.20
ComEM (GPT-3.5-turbo) 87.62 69.63 90.85 84.68 86.37 83.83
ComEM (GPT-4o-mini) 88.24 71.47 90.58 87.84 88.56 85.34

Table 6: Comparison with Online Model (F1 Score). For our method PUER, we fix the RL-based Selector model as
Qwen-2.5-7B, and only change Matcher with different backbone model.

id title Manufacturer price

l1162 motu digital performer 5 digital audio software competitive upgrade ( mac only ) motu 395.0
l587 microsoft word 2007 version upgrade microsoft 109.95

Table 7: Examples of Amazon dataset with basic attributes Ā

the column Proportion of Positive Samples rep-1115

resents the ratio of PU positive sample(e.g., 50)1116

to all labeled positive training samples.1117

G Full Version of Blocking Result1118

Table 13 shows full version of blocking result in1119

all datasets. PUEL shows the superior performance,1120

i.e., highest values of PC and PQ and the smallest1121

value of K in most cases.1122

H Detailed Comparison with Online1123

Model1124

Table 6 shows the comparison of PUER and other1125

offline and online models without SFT (Supervised1126

Fine-Tuning). The results demonstrate the effec-1127

tiveness of co-training of Matcher and Selector1128

subtasks in our proposed method PUER. All per-1129

formances are evaluated under the same In-Context1130

Learning settings, using an equal number of posi-1131

tive and negative samples for demonstration.1132

In Table 6, the upper section includes our meth-1133

ods PUER and PUER without SFT, while the lower1134

section follows the setting from (Wang et al., 2025).1135

We also compare the matching result of PUER1136

with backbone LLMs under different parameter size1137

for Matcher, e.g., 0.5B, 1.5B, 3B and 7B in Table 6.1138

We can observe that larger backbone LLMs are 1139

not consistently stronger in entity matching perfor- 1140

mance. However, the 7B model achieve the highest 1141

average performance among different scenarios. 1142

I PC/PQ Curve for Blocking Experiment 1143

Figure 7 shows the performance of our RAG 1144

blocker in PUER, in terms of PC ( Top-K Recall) 1145

for different values of K(candidate set size). A 1146

curve approaching the upper left corner of the fig- 1147

ure indicates better performance. The results show 1148

that the RAG blocker of PUER is highly effective, 1149

capable of retrieving the smallest number of candi- 1150

date tuples while achieving the highest recall. 1151

J CSSR Curve for Blocking Experiment 1152

varying K 1153

Figure 8 provide the Blocker performance(in PC, 1154

w.r.t. Top-K Recall) under different K, following 1155

the setting of DeepBlocker (Thirumuruganathan 1156

et al., 2021). The curve approaching the lower 1157

right corner of the figure indicates better perfor- 1158

mance. PUER also performs the best among all 1159

baseliens in most datasets. 1160

14



id title Manufacturer price

r2816 microsoft word 2007 upgrade ( pc ) null 109.95
r2109 motu digital performer dp5 software music production software null 319.95

Table 8: Examples of Google dataset with basic attributes Ā

id title Ma. price category sub-category platform edition type modelno

l11162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
Produc-
tion

DAWs Mac Competitive
Upgrade

Software DP5

l21162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
& Music
Software

Audio Editing
& Production

Mac Standard Software 5

l31162 motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu 395.0 Audio
Editing
Software

DAW (Digital
Audio Worksta-
tion)

Mac Upgrade Software 5

l1587 microsoft word 2007 version
upgrade

microsoft 109.95 Productivity
Software

Office Suites Windows Standard Upgrade 2007

l2587 microsoft word 2007 version
upgrade

microsoft 109.95 Productivity
Software

Word Process-
ing

Windows home Upgrade 2007

l3587 microsoft word 2007 version
upgrade

microsoft 109.95 software office Windows ultimate Upgrade 2007

Table 9: Examples for Amazon dataset (left table for Amazon-Google dataset). Grey columns are original at-
tributes(w.r.t. Ā), and blue columns are enriched attributes(w.r.t. B̄)). For each entity (e.g., l1162, l587), we report
three different enrichment outputs, to demonstrate the uncertainty of our proposed data enrichment methods. Ma. is
short for attribute Manufacturer.

K Example of the Schema Enrichment1161

Prompt ptSE1162

In Prompt Template 3, Entity 1 l1162 is from Ta-1163

ble 9(left table Amazon), and Entity 2 r2109 is from1164

Table 10 (right table Google).1165

For each dataset, we query LLM using the same1166

prompt ptSE with varying different Entity 1 and1167

Entity 2 multiple times. We then apply majority1168

voting to the different generated attributes to deter-1169

mine B̄.1170

L Example of the Data Enrichment1171

Prompt ptenr1172

Prompt Template 5 provides an example of ptenr1173

using the Amazon-Google dataset. The enriched1174

attribute set B̄ is obtained from the previous step1175

using ptSE.1176

ptenr is queried with different entity pairs, e.g.,1177

(l1162, l587), (l1162, r2109), (l587, r2816), (l587, r2109)1178

to generate different values of B̄.1179

M Example of the Subtask Matcher1180

Prompt ptm1181

Prompt Template 4 provides an example for the1182

Matcher subtask using the DBLP-Scholar (DS)1183

dataset. Paper 1 and Paper 2 both contain enriched1184

attributes that are extracted in the previous step us-1185

ing the prompt ptenr.1186

N Example of the Subtask Selector 1187

Prompt pts 1188

Prompt Template 6 provides an example for the 1189

Selector subtask using the Amazon-Google (AG) 1190

dataset. Entity 1 and Candidate already contain 1191

enriched attributes extracted in the previous step 1192

using the enrichment prompt ptenr. Additionally, 1193

Candidate entities are also retrieved and ranked us- 1194

ing the preceding Blocker component, i.e., FRAG. 1195

O Training curve for Selector 1196

We also list the curve for training GRPO-based 1197

Selector in Fig. 9. 1198
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id title Ma. price category sub-category platform edition type modelno

r12816 microsoft word 2007 upgrade (
pc )

null 109.95 Productivity
Software

Office Suites Windows Standard Upgrade 2007

r22816 microsoft word 2007 upgrade (
pc )

null 109.95 Software Office Suites Windows Upgrade Desktop
Software

2007

r32816 microsoft word 2007 upgrade (
pc )

null 109.95 Productivity
Software

Word Proces-
sors

PC Upgrade Desktop
Software

WORD2007UPG

r12109 motu digital performer dp5
software music production soft-
ware

null 319.95 Audio
Produc-
tion

DAWs Software DP5

r22109 motu digital performer dp5
software music production soft-
ware

null 319.95 Audio
Produc-
tion

DAWs Mac Pro Software DP5

Table 10: Examples of Google dataset (right table for Amazon-Google dataset). Grey columns are original at-
tributes(w.r.t. Ā), and blue columns are enriched attributes(w.r.t. B̄)). For each entity (e.g., r2816, r2109), we report
three different enrichment outputs, to demonstrate the uncertainty of our proposed data enrichment methods. Ma. is
short for attribute Manufacturer.

Symbol Description
t, {A1, · · · , Am} tuple t with multi-attributes {A1, · · · , Am}

P,Penr the labeled positive training dataset, and its enriched version
PRAG, NRAG the set of potentially positive and negative tuple pairs by the RAG blocker
Rl, Rr the left and right relational tables of multi-attribute tuples
B̄, m the set of enriched attributes, the number of enriched attributes
K the top-K most similar tuples to retrieve by the blocker

NNK(t) the set of top-K most similar tuples with the tuple t
FRAG the entity blocking model of PUER
FEM the entity matching model of PUER
FM

EM the Matcher subtask in FEM

FS
EM the Selector subtask in FEM

Cs(t) the candidate list of the tuple t in FS
EM

Flabel the labeler of the Selector
Dtrain the generated training data to fine-tune FEM, including labeled and pseudo-labeled training instances

ptm, pts the prompts of Matcher and Selector
ptenr the prompt of data enrichment by LLMs
ptSE the prompt of enriching more attributes by LLMs
λ the warmup iteration

Membed Embedding model for Blocker
St pairwise enriched tuple set in right table Rr for t

pm(s, t) query for LLM-based Matcher, to determine whether tuple pair s, t is match or mismatch

Table 11: General notations with corresponding descriptions.

Dataset Domain # All # Match # of Original Attr # of Enriched Attr # |Rl|, |Rr| Proportion of PU Proportion of Positive Samples

Abt-Buy (AB) Product 9,575 1,028 3 8 1081, 1092 0.87% 8.11%
Walmart-Amazon (WA) Electronic 10,242 962 5 9 2554, 22074 0.81% 8.68%
Amazon-Google (AG) Electronic 11,460 1,300 3 9 1363, 3226 0.72% 7.15%

DBLP-ACM (DA) Citation 12,363 2,224 4 6 2616, 2294 0.67% 3.75%
DBLP-Scholar (DS) Citation 28,707 5,347 4 6 2616, 64263 0.29% 1.56%

Company(CO) Company 112,632 28,200 1 3 28200, 28200 0.07% 0.29%

WDC-All-Small(WS) Product 13,436 3,516 1 6 7437, 8091 0.77% 2.69%
Computer(COM) Electronic 3,865 1,005 1 7 2204, 2443 2.24% 8.98%

Camera(CA) Product 2,858 752 1 7 1561, 1743 3.54% 13.62%
Shoes(SH) Product 3,099 812 1 8 1600, 1767 3.10% 11.85%

Watch(WAT) Product 3,181 831 1 9 1821, 1991 2.84% 10.98%

Table 12: Datasets used in our experiments, # means Number of, # Attr provide the original/enriched attribute
number, Proportion of PU means the number of labeled samples divide all train samples in benchmark; Proportion
of Positive Samples means the number of labeled positive samples in PU settings divide all positive samples in
training samples.
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AG AB WA DA DS WS COM CA WAT SH

DeepBlocker 85.69 / 3.67 / 20 75.19 / 3.57 / 20 90.12 / 3.39 / 10 97.21 / 82.49 / 1 90.14 / 18.43 / 10 55.00 / 0.72 / 20 61.59 / 0.80 / 20 60.37 / 0.79 / 20 28.03 / 0.30 / 20 25.86 / 0.27 / 20
Sudowoodo 90.06 / 9.80 / 8 90.37 / 28.73 / 3 90.54 / 8.53 / 4 98.92 / 84.92 / 1 90.24 / 12.30 / 15 53.04 / 0.92 / 20 68.55 / 1.12 / 20 61.96 / 1.01 / 20 26.83 / 0.35 / 20 26.23 / 0.34 / 20
STransformer 91.60 / 15.69 / 5 74.32 / 3.53 / 20 86.38 / 1.63 / 20 97.03 / 82.34 / 1 91.17 / 26.62 / 7 57.39 / 0.65 / 20 52.73 / 0.68 / 20 71.41 / 0.94 / 20 59.08 / 0.77 / 20 49.51 / 0.65 / 20

CLER 90.59 / 21.25 / 4 94.96 / 48.88 / 2 92.14 / 13.47 / 3 98.04 / 84.40 / 1 90.72 / 30.14 / 6 63.68 / 0.91 / 20 74.91 / 1.07 / 20 60.00 / 0.95 / 20 33.21 / 0.47 / 20 30.84 / 0.44 / 20
PUER 95.80 / 27.34 / 3 94.06 / 89.45 / 1 93.76 / 17.65 / 2 99.72 / 84.64 / 1 92.79 / 31.61 / 6 90.35 / 1.39 / 17 90.84 / 2.15 / 11 90.55 / 2.97 / 8 90.49 / 1.68 / 14 90.51 / 1.39 / 17

Table 13: Performance Evaluation. Following UniBlocker (Wang et al., 2024a), we report the first results (in order
of PC/PQ/K, also known as Top-K recall/precision) of baselines when their PC exceeds the threshold (90%). If
both methods have larger PC than the threshold, we evaluate K, otherwise we evaluate their PC. If their K are the
same, we evaluate their PC and PQ.

Dataset Original Attribute Ā Enriched Attribute B̄

Amazon-Google (AG) title, manufacturer, price category, subcategory, platform, edition, type, modelno
Abt-Buy (AB) name, description, price category, sku, brand, modelno, keyfeatures

Walmart-Amazon (WA) title, category, brand, modelno, price subcategory, key-features, sku, color
DBLP-ACM (DA) title, authors, venue, year keywords

DBLP-Scholar (DS) title, authors, venue, year keywords, research-area
Company Description CompanyName,CompanyType,ShortDescription

WDC-All-Small (WS) title category, subcategory, brand, modelno, key-features
WDC-Computer (COM) title category, subcategory, brand, modelno, sku, edition

WDC-Camera (CA) title category, subcategory, brand, modelno, sku, key-features
WDC-Shoes (SH) title category, sku, brand, modelno, colorway, type, edition

WDC-Watch (WAT) title brand, sku, gender, modelno, diameter, type, colorway , price

Table 14: Original and enriched attribute for all datasets

Hyper-Parameter Value Description(Optional)

Backbone model of FEM Qwen-2.5-7B (Yang et al., 2024) Applied for both Enrichment, Matcher and Selector
Backbone Model of FRAG bge-large-en-1.5 (Zhang et al., 2023) Applied for Blocker Membed

Learning Rate for FEM 1e-4
Learning Rate for FRAG 1e-5

τ 0.02 Temperature parameter for contrastive learning of Membed

K 20 Range of default NN search for Blocker, controlled by pointer ptrs, ptre
δ 5 Step length for each iteration of pointer ptrs, ptre
λ 2 iteration of co-training
n 6 number of candidate set for Selector during DPO phase

Max Input Length of FEM 2048
Max Input Length of FRAG 256

Lora-rank 16 Lora-Rank for fine-tune FEM

Training epoch 3 Epoch for fine-tune FEM,FRAG

Table 15: Hyper-Parameter List
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Instruction for ptSE

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) Your task is to determine additional attributes for dataset Amazon-Google. By
adding these attributes, you will be leaded to a more clear justification on whether Entity 1 and
Entity 2 are the same entity or not.
(instruction) Your output should be in JSON format, only contain the set of enriched attributes.
You should take the following Incomplete Entity 1 and Entity 2 as reference.
(input)
Entity 1: {’title’: ’motu digital performer dp5 software music production software’, ’manufacturer’:
”, ’price’: 319.95}
Entity 2: {’title’: ’motu digital performer 5 digital audio software competitive upgrade ( mac only
)’, ’manufacturer’: ’motu’, ’price’: 395.0}
(output format) Enriched Attributes:
{Attribute 1:”,Attribute 2:”}

Figure 3: Schema Enrichment Prompt ptSE

Instruction for ptm

(system message) You are an AI assistant that follows instruction extremely well. User will give
you a question. Your task is to answer as faithfully as you can.
(task description) You are an expert in computer science and database.
Judge whether record Paper 1 from DBLP, and record Paper 2 from Google Scholar are match or
mismatch (refer to the same paper or not), and choose within the given Options.
(input)
Paper 1:
{title: fast algorithms for mining association rules in large databases, authors: R Agrawal, R
Srikant, venue: VLDB, year: 1994, keywords: [association rules, large databases, data mining,
algorithms, Apriori algorithm, FP-growth algorithm]}

Paper 2:
{title: an efficient algorithm for mining association rules in large databases, authors: a savasere , e
omiecinski , s navathe, venue: , year: 1995}
(output format)
Options: [match,mismatch]

Output format example:{Output: }

Figure 4: The Prompt ptm for the Matcher Subtask
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Instruction for ptenr

(task description) You are an expert in e-commerce, and you are well known to various goods in Amazon platform.
Enrich Entity 1 and Entity 2 with attributes: category/subcategory/platform/edition/type/modelno.
(instruction) Your output should be in JSON format, only contain the value of enriched attributes. You should take the
following Incomplete Entity 1 and Entity 2 as reference.
(input)

1 Entity 1:{\’title\’: \’microsoft visio standard 2007 version upgrade\’, \’
manufacturer\’: \’microsoft\’, \’price\’: 129.95}\n

2 Entity 2:{\’title\’: \’adobe cs3 design standard upgrade\’, \’manufacturer\’: \’\’,
\’price\’: 413.99}

(output format)

1 {"Entity 1": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""},

2 "Entity 2": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""}}

Figure 3: Data Imputation (Enrichment) Prompt ptenr

Instruction for pts

Task: Entity Matching.
Objective: For the given Entity 1, determine which of the numbered Entity 2 candidates refer to the same real-world
entity.
Instructions for your response:
1. Specify the id of candidates that match Entity 1 within <positive>...</positive> tags, return in list format.
2. Specify the id of candidates that DO NOT match Entity 1 within <negative>...</negative> tags, return in list
format.
3. Ensure all candidate indices are covered in either the positive or negative set.
(input)

1 Entity 1: {’id’: 574, ’title’: ’microsoft mappoint 2006 with gps’, ’manufacturer’
: ’microsoft’, ’price’: 349.0}

Candidate Options:

1 Entity 2 Candidates:
2 {’id’: 3029, ’title’: ’microsoft mappoint 2006 with gps locator ( pc )’, ’

manufacturer’: ’’, ’price’: 349.99}
3 {’id’: 3190, ’title’: ’microsoft ( r ) mappoint ( r ) 2006’, ’manufacturer’: ’’, ’

price’: 249.99}\n
4 {’id’: 2480, ’title’: ’microsoft b21-00806 ae mappoint 2006 cd’, ’manufacturer’: ’’,

’price’: 50.39}
5 {’id’: 1623, ’title’: ’language guide for nuvi 350’, ’manufacturer’: ’’, ’price’:

79.95}
(output format)
<think> · · · </think><positive> [1,2] </positive><negative> [3] </negative>

Figure 4: The Prompt pts for the Selector Subtask

Figure 5: Data Imputation (Enrichment) Prompt ptenr

Instruction for ptenr

(task description) You are an expert in e-commerce, and you are well known to various goods in Amazon platform.
Enrich Entity 1 and Entity 2 with attributes: category/subcategory/platform/edition/type/modelno.
(instruction) Your output should be in JSON format, only contain the value of enriched attributes. You should take the
following Incomplete Entity 1 and Entity 2 as reference.
(input)

1 Entity 1:{\’title\’: \’microsoft visio standard 2007 version upgrade\’, \’
manufacturer\’: \’microsoft\’, \’price\’: 129.95}\n

2 Entity 2:{\’title\’: \’adobe cs3 design standard upgrade\’, \’manufacturer\’: \’\’,
\’price\’: 413.99}

(output format)

1 {"Entity 1": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""},

2 "Entity 2": {"title": "", "manufacturer": "", "price": "", "category": "", "
subcategory": "", "platform": "", "edition": "", "type": "", "modelno": ""}}

Figure 3: Data Imputation (Enrichment) Prompt ptenr

Instruction for pts

Task: Entity Matching.
Objective: For the given Entity 1, determine which of the numbered Entity 2 candidates refer to the same real-world
entity.
Instructions for your response:
1. Specify the id of candidates that match Entity 1 within <positive>...</positive> tags, return in list format.
2. Specify the id of candidates that DO NOT match Entity 1 within <negative>...</negative> tags, return in list
format.
3. Ensure all candidate indices are covered in either the positive or negative set.
(input)

1 Entity 1: {’id’: 574, ’title’: ’microsoft mappoint 2006 with gps’, ’manufacturer’
: ’microsoft’, ’price’: 349.0}

Candidate Options:

1 Entity 2 Candidates:
2 {’id’: 3029, ’title’: ’microsoft mappoint 2006 with gps locator ( pc )’, ’

manufacturer’: ’’, ’price’: 349.99}
3 {’id’: 3190, ’title’: ’microsoft ( r ) mappoint ( r ) 2006’, ’manufacturer’: ’’, ’

price’: 249.99}\n
4 {’id’: 2480, ’title’: ’microsoft b21-00806 ae mappoint 2006 cd’, ’manufacturer’: ’’,

’price’: 50.39}
5 {’id’: 1623, ’title’: ’language guide for nuvi 350’, ’manufacturer’: ’’, ’price’:

79.95}
(output format)
<think> · · · </think><positive> [1,2] </positive><negative> [3] </negative>

Figure 4: The Prompt pts for the Selector SubtaskFigure 6: The Prompt pts for the Selector Subtask
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(a) Amazon-Google (varying K)
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(b) Abt-Buy (varying K)
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(c) Walmart-Amazon (varying K)
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(d) DBLP-ACM (varying K)
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(e) DBLP-Scholar (varying K)
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(f) WDC-All-Small (varying K)
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(g) WDC-Computer (varying K)
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(h) WDC-Camera (varying K)
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(i) WDC-Shoes (varying K)
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(j) WDC-Watch (varying K)

Figure 7: Effectiveness evaluation for Blocker vary K. The curve approaching the upper left corner of the figure
indicates better performance
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(f) WDC-All-Small (varying PC)
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(g) WDC-Computer (varying PC)
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(h) WDC-Camera (varying PC)
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(i) WDC-Shoes (varying PC)
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Figure 8: Effectiveness evaluation for Blocker vary PC(w.r.t. Recall in figure). The curve approaching the lower
right corner of the figure indicates better performance
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(a) KL Loss Curve for Actor (b) The curve of estimated KL divergence between old and
new policies for Actor

(c) The curve for fraction of policy gradient loss being
clipped for Actor

(d) Mean reward score curve for Critic

(e) Mean validation reward score curve for Critic

Figure 9: The training curve for Selector model with dataset AG.
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