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Data quality is critical across many applications. The utility of data is undermined by various errors, making
rigorous data cleaning a necessity. Traditional data cleaning systems depend heavily on prede!ned rules and
constraints, which necessitate signi!cant domain knowledge and manual e"ort. Moreover, while con!guration-
free approaches and deep learning methods have been explored, they struggle with complex error patterns,
lacking interpretability, requiring extensive feature engineering or labeled data. This paper introduces GIDCL
(Graph-enhanced Interpretable Data Cleaning with Large language models), a pioneering framework that
harnesses the capabilities of Large Language Models (LLMs) alongside Graph Neural Network (GNN) to
address the challenges of traditional and machine learning-based data cleaning methods. By converting
relational tables into graph structures, GIDCL utilizes GNN to e"ectively capture and leverage structural
correlations among data, enhancing the model’s ability to understand and rectify complex dependencies
and errors. The framework’s creator-critic work#ow innovatively employs LLMs to automatically generate
interpretable data cleaning rules and tailor feature engineering with minimal labeled data. This process includes
the iterative re!nement of error detection and correction models through few-shot learning, signi!cantly
reducing the need for extensive manual con!guration. GIDCL not only improves the precision and e$ciency
of data cleaning but also enhances its interpretability, making it accessible and practical for non-expert users.
Our extensive experiments demonstrate that GIDCL signi!cantly outperforms existing methods, improving
F1-scores by 10% on average while requiring only 20 labeled tuples. The codes, datasets and full version of the
paper are available [2].

CCS Concepts: • Information systems→ Data cleaning.
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1 Introduction
Data serves as a cornerstone in multiple applications, e.g., data analysis, fault detection, recom-
mendation systems, and so on, but its utility is contingent upon its quality. Real-life data often has
various errors, rendering it ’dirty’ and necessitating rigorous cleaning processes. Data cleaning (DC),
despite its critical importance, is a time-intensive and labor-intensive task for data scientists. DC
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task often consists of two major parts, error detection and error correction, where error detection
identi!es dirty cells [4], and error correction !xes these dirty ones to correct values [89].

Traditional DC systems follow the pre-con!guration paradigm [89], where users have to provide
di"erent types of rules or constraints, such as functional dependencies [71], denial constraints [19],
conditional functional dependencies [35], and so forth. For most non-expert users, this presents a
signi!cant barrier, as they must have prior knowledge of both the dataset and the DC system to
con!gure the rules properly [4].
Meanwhile, multiple con!guration-free DC approaches, e.g., [50, 70, 104], have been proposed.

The non-expert users only need to provide a few labeled examples, which contain errors and
corresponding error corrections, and then these methods could automatically learn to generalize
these error detection and correction strategies to unseen data. Con!guration-free approaches su"er
from !nding correct values for error data in large search space. To tackle it, several works re!ne
the search space, such as retrieving and ranking suitable values within the dataset itself [89, 103] or
searching external data sources [20]. However, these con!guration-free DC methods still heavily
rely on prede!ned feature engineering and often struggle with unde!ned error patterns[68, 70]. As
a result, they are unable to adapt the !xed feature engineering to address various datasets and error
types. Furthermore, they are ine"ective against complex textual errors when the correct values do
not exist within the dataset[79, 103].

Recently, the use of deep learning models, especially Transformer based language models, shed
lights on DC task, which detect and repair dirty data by learning the real data distribution. RPT [96]
and TURL [25] employ encoder-decoder architectures and are pre-trained in a tuple-to-tuple fashion
by corrupting the input tuple and then learning to reconstruct the original tuple. However, deep
learning-based methods typically lack interpretability that are data cleaning patterns, rules and
dependencies that can be explicitly veri!ed by human beings [79] for both error detection and
correction, and usually require large amount of clean and well-annotated training data. For example,
TURL used a collection of web tables of 4.6GB in total for pre-training, in order to extract values for
imputing the missing value. This is because learning on dirty datasets cannot guarantee correctness
and may lead to new errors[81].
To summarize current works, pre-con!guration DC methods that adopt data quality rules are

highly interpretable, but these rules are di$cult to generate or handcraft without domain knowl-
edge. Con!guration-free methods usually apply pruning strategies or dedicate feature engineering
along with traditional ML models for error detection and correction, but they are di$cult to handle
complex scenarios such as unde!ned error pattern and complex textual errors, and heavily rely on
pre-de!ned feature engineering. Deep learning-based DC methods can learn data distribution auto-
matically, but they require a lot of high-quality labelling data, and typically lack of interpretability,
which is crucial in the data systems of healthcare, !nance and banking, and the government and
public sectors.

Large language models (LLMs) [14, 97],which typically contain billions (or more) of parameters,
and pre-trained on massive text data[94], have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks. Such e"ectiveness can be largely attributed to several
inherent characteristics, including (1) follow natural language instructions; (2) utilize few-shot
prompting, which involves providing LLM with a small number of example tasks to e"ectively
adopt to similar new tasks; (3) leverage its rich prior knowledge, which is encoded into its
parameters.
Given the considerable potential bene!ts of LLMs, this raises a fundamental question: Can we

e"ectively integrate LLMs into a data cleaning framework that can address previously mentioned
challenges systematically? This question remains unanswered. Besides, directly applying LLMs to
the data cleaning task, without a carefully designed framework or mechanism, introduces several
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substantial obstacles (details in Section 2.2): (1) LLMs face challenges comprehending data quality
rules and dependencies across relational tables due to token limitations, resulting in inconsistent
data cleaning outcomes. (2) The di$culty in understanding complex dependencies can lead LLMs
to generate plausible yet incorrect or !ctional data repairs, a phenomenon known as hallucination.
(3) When !ne-tuned on limited labeling data, LLMs tend to over!t, performing well on familiar
data but poorly on unseen datasets. (4) The substantial size and complexity of LLMs compromise
e$ciency, making it impractical to apply data cleaning to all tuples sequentially. Currently, there
remains a notable gap in systematic research dedicated to integrating LLMs into a data cleaning
framework capable of concurrently and accurately solving error detection and correction issues.
This integration seeks to overcome the previously mentioned challenges and limitations inherent
in existing data cleaning solutions.
In this paper, we propose a Graph-enhanced Interpretable Data Cleaning with Large language

models, denoted by GIDCL for short, that achieves both high precision and recall. GIDCL is a
self-supervised learning method that uni!es graph neural networks (GNN), pre-trained language
models (PLMs) and large language models (LLMs) into an end-to-end work#ow (shown in Figure 2)
that could process the overall data cleaning procedure, as well as generating interpretable DC
patterns.

GIDCL provides a systematic mechanism to incorporates LLMs in DC work#ow, which contains
several components working together to address the challenge of applying LLM for DC and
limitations of existing works. First, we transform relational tables into graph structures, and capture
the structural correlations among tuples and attributes with GNN. Second, we introduce a creator-
critic work#ow that involves prompting LLMs and !ne-tuning PLMs for error detection, allowing
iterative re!nement of the detection model using few-shot labeled samples. Third, we utilize a
graph-enhanced error correction approach that leverages both LLMs and GNN to generate reliable
corrections e$ciently. The integration of GNN and PLMs e"ectively assists LLMs in perceiving
structural information and retrieving relevant context, thereby enhancing e$ciency and suppressing
hallucination in GIDCL .

By leveraging the rich prior knowledge of LLMs, GIDCL can automatically extract and generate
various data cleaning rules using natural language for di"erent scenarios, e"ectively overcoming
the challenges posed by traditional DC methods that rely on handcrafted rules. GIDCL achieves
robust error detection and correction in complex scenarios. Its capacity to follow natural language
instructions and utilize few-shot prompting to automatically customize feature engineering is
friendly to non-expert users, and directly addresses the signi!cant limitations of con!guration-free
methods, which only rely on the prede!ned feature engineering in their algorithms to solve di"erent
problems. Furthermore, GIDCL requires only a minimal amount of labeled data (e.g., 20 tuples)
compared to existing deep learning-based methods. This bene!t arises from the few-shot prompting
ability of LLMs, enabling the model to quickly adapt to new tasks with limited demonstrations. By
implicitly mastering the semantics and structural dependency through in-context learning, GIDCL
achieves both highly e"ectiveness and e$ciency, while extracting and generating interpretable DC
patterns and dependencies with LLM. Our contributions are:
(1) An end-to-end framework for data cleaning. We introduce GIDCL , an end-to-end data

cleaning framework that automatically handles user labeling, error detection and correction in
a reliable manner with high recall and precision. To the best of our knowledge, this is the !rst
systematic e"ort to develop a data cleaning (DC) framework specialized in integrating LLMs.
(Section 3)

(2) A creator-critic work!ow for error detection. To automatically extract reliable error detec-
tion patterns and optimize error detection model from few-shot labeled samples, we propose a
LLM-enhanced creator-critic work#ow for error detection, which iteratively re!nes an error
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Table 1. Instances of a Hospital dirty table. Erroneous cells are marked in red color and the correction value
is marked in blue.

TupleID ProviderID City State Zip County
𝐿1 111303 Monticello VA,Jasper→ VA 31064 Jasper
𝐿2 111303 Monticello VAA→ VA 31064 Jasper
𝐿3 1x1303→ 111303 Monticello AR 71655 Drew
𝐿4 10001 Monticello→ Dothan AL 36301 Houston
𝐿5 10001 Dothan AL,Houston→ AL 36301 NULL→ Houston
𝐿6 10001 Dothan AR→ AL NULL→ 36301 Houston
𝐿7 10001 Dothan AL 36301 Houst→ Houston

detection model and a LLMs-generated pattern set. (Section 4, Section 5)
(3) Error correction based on LLMs.We propose a retrieval-augmented paradigm for !ne-tuning

local LLMs in order to generate reliable corrections with both high e"ectiveness and e$ciency.
Furthermore, considering that LLMs are not very sensitive to dependency errors, we designed
a graph structure learning method that learns the structural information of datasets. (Section 6)

2 Background
In this section we formally present the data cleaning (DC) task.

2.1 Data Cleaning
The data cleaning over a relational table is a process that identi!es and repairs erroneous data with
the correct values with a few annotated labels. Denote a relational table by T = {𝐿1, 𝐿2, · · · , 𝐿 | T | },
where |T | represents its size. The relational schema of this table is given by A = {𝑀1,𝑀2, · · · ,𝑀𝑀}.
Each element 𝐿𝑁 represents a 𝑁-attribute tuple in T , and 𝐿𝑁, 𝑂 stands for the value of attribute 𝑀 𝑂

in 𝐿𝑁 . Correspondingly, 𝐿+𝑁, 𝑂 represents the clean value of 𝐿𝑁, 𝑂 , and T
+ is the ground truth of table

T . An error occurs when a cell value 𝐿𝑁, 𝑂 in T deviates from its ground truth 𝐿+𝑁, 𝑂 , i.e., 𝐿
+

𝑁, 𝑂 ω 𝐿𝑁, 𝑂 . In
alignment with previous studies [68, 79, 86], our objective encompasses the detection and correction
of both syntactic and semantic errors. These errors encompass missing values, typographical errors,
formatting issues, violations of functional dependencies, and so on.

Problem statement. Given a dirty relational table T and a limited labeling budget 𝑂 , where users
are only able to label at most 𝑂 tuples, our objective is to cleanse the table T , aiming to identify
and rectify all errors in T . Here we denote the set of labeled tuples by Tlabel = {(𝐿𝑁 , 𝐿+𝑁 ) |𝐿𝑁 ↑ T },
where 𝐿+𝑁 is a tuple of all clean attributes.

Example 1: Consider a relational table in Table 1 that consists of 7 tuples with 6 attributes. There
are many erroneous cells (marked with blue) in the table, e.g., Provided ID of 𝐿3, City of 𝐿4 and State
of 𝐿2. The data cleaning task is to identify these cells and replace them with correct values (marked
in red), e.g., revising City of 𝐿4 by Dothan, and imputing Zip of 𝐿6 by 36301. !

The data cleaning task is non-trivial [68, 70] for the following reasons. First, the labeling budget
𝑂 is typically very limited due to the expensive user labeling cost, thereby posing a challenging in
generalizing them across all instances, e.g.,ML-based methods might over!t to the training data.
Second, errors detected in the error detection phase might propagate to the error correction phase.
If an error remains unidenti!ed, it will never be repaired. Lastly, data cleaning involves addressing
various types of errors, such as inconsistencies, missing values, and typos. Consequently accurately
repairing erroneous cells with correct values is non-trivial.

2.2 Challenges of applying LLMs for DC
In this subsection, we !rst outline the challenges associated with applying LLMs to data cleaning,
and then demonstrate why direct adoption is impractical. The summarized challenges include:
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Table 2. General notations with corresponding descriptions.
Symbol Description
T a relational table provided as input for cleaning
G the directed graph constructed from T for graph structure learning
𝐿𝐿 ,𝐿𝐿,𝑀 the 𝑁-th tuple in T/ the 𝑂-th attribute in 𝐿𝐿
𝑃𝐿 the center node in G, corresponding to 𝐿𝐿
𝑄𝐿 ↑ A the 𝑁-th attribute in T/all attribute in T

T
+, 𝐿+𝐿 , 𝐿

+

𝐿,𝑀 the clean versions of table T , tuple 𝐿𝐿 and cell 𝐿𝐿,𝑀
𝑅 det𝑁𝑀

↑ F
det the error detection function for the 𝑂-th attribute

𝑅 gen𝑁𝑀
↑ F

gen the error generation function for the 𝑂-th attribute
𝑅 corr𝑁𝑀

↑ F
corr the error correction function for the 𝑂-th attribute

F F = F
det

↓ F
corr

↓ F
gen

C𝐿 𝑁-th cluster in G, divided by GSL
Mdet error detection model
Mcorr error correction model
Tlabel labelled tuples in T by users, s.t., Tlabel = { (𝐿𝐿 , 𝐿+𝐿 ) |𝐿𝐿 ↑ T}

Tpseudo self-generated tuples in T , labelling by GIDCL
Tcoreset coreset in T , generated by error detection model
Terr detected erroneous cells in T

𝑆train training data for Mdet,Mcorr
O the domain of all objects in T

(a) Error correction performance of LLMs with and
w/o hints

RoBERTa
Mistral-7B  

(b) Error detection performance on Beers over
training time

Fig. 1. Observations of LLMs for data cleaning

(1) Understanding dependencies: due to token limitation (the maximum input length, e.g., 4k to-
kens for GPT-3.5), it is impractical to feed entire relational tables into LLMs. This restriction severely
impedes the models’ ability to grasp comprehensive data quality rules and inherent dependencies,
leading to inconsistent data cleaning outcomes across di"erent instances. (2) Hallucination: The
absence of necessary contextual information and adequate demonstrations may cause LLMs to
generate plausible yet incorrect or !ctional data repairs. This phenomenon occurs as the models
!ll gaps in their understanding with erroneous or fabricated information. (3) Over"tting with
limited labeled data: When !ne-tuned on limited labeled data, LLMs are susceptible to over!tting.
This issue manifests as the model performing well on the training data but poorly on unseen data,
limiting its generalizability. (4) E#ciency issues: The considerable size and complexity of LLMs
pose e$ciency challenges, making it impractical to apply data cleaning processes to all tuples
individually and sequentially. This ine$ciency is exacerbated in large-scale data environments.

A straightforward approach to implementing LLMs for the data cleaning task is as follows.
(a) Error detection Mdet. By comparing each pair of labeled cells (𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 ) ↑ Tlabel, one could design
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a training pair (𝑃𝑁, 𝑂 ,𝑄𝑁, 𝑂 ) for detecting attribute 𝑀 𝑂 for a tuple 𝐿𝑁 , and !ne-tune a LLM-based error
detection model Mdet. Here 𝑃𝑁, 𝑂 = (𝑅

𝑄 𝑀

det, serial(𝐿𝑁 ), 𝐿𝑁, 𝑂 ), 𝑅
𝑄 𝑀

det is an instruction to identify errors in
𝑀 𝑂 , and serial(𝐿𝑁 ) represents the serialization of 𝐿𝑁 as row context of cell 𝐿𝑁, 𝑂 . The label 𝑄𝑁, 𝑂 is True if
𝐿𝑁, 𝑂 = 𝐿+𝑁, 𝑂 , indicating no error, and False otherwise. During training, all user-labeled pairs (𝑃𝑁, 𝑂 ,𝑄𝑁, 𝑂 )
are provided to !ne-tune Mdet employing the supervised !ne-tuning strategy. In the inference
procedure, a cell 𝐿𝑁, 𝑂 is !rst transformed into 𝑃𝑁, 𝑂 and input toMdet for prediction.Mdet operates as
a binary classi!cation model.
(b) Error correction Mcorr. Analogous to error detection, one constructs (𝑃𝑁, 𝑂 ,𝑄𝑁, 𝑂 ) ↑ Tlabel to repair

𝐿𝑁, 𝑂 using a LLM-based correction model Mcorr. Here 𝑃𝑁, 𝑂 = (𝑅
𝑄 𝑀
corr, serial(𝐿𝑁 ), 𝐿𝑁, 𝑂 ), 𝑄𝑁, 𝑂 = 𝐿+𝑁, 𝑂 , 𝑅

𝑄 𝑀
corr

represents an instruction for error correction to generate a recommended !x for 𝐿𝑁, 𝑂 . The training
and inference procedure of Mcorr are similar with above Mdet. Mcorr operates as a generative
model.

Following this paradigm, we elucidate our !ndings regarding e$ciency and e"ectiveness.
E!ciency. Fine-tuning and inference with LLM are inherently time-consuming. Consequently, it
is impractical to utilize LLM to identify and rectify a large number of cells in tables, as these
models require making predictions for each cell individually. We conduct experiments and found
error detection and correction using LLM for 10k cells take up to 10,330 and 24,114 seconds on
consumer-level GPUs.
E"ectiveness.We have made the following observations about applying LLM directly for DC: (1)
When acting as error detection model , due to the decoder-only generative manner and huge number
of parameters, LLMs exhibit signi"cantly longer convergence time and over"tting issue
when trained with limited labelling data, compared to non-LLM models. See Figure 1(b),
LLMs (Mistral-7B) require aminimum of 50 epochs to converge, yet their F-measure remains inferior
to that of a Transformer-based error detection model(RoBERTa) [109]. (2) As a generative model
for error correction, it is hard for LLMs to repair data without any context or dependencies.
As depicted in Figure 1(a), we repair 𝐿 [𝑀1] usingMcorr without additional dependencies and context
information, and the F-measure of LLMs is as low as 0.13. This indicates that LLMs may not
accurately identify the correct value for 𝑀1, primarily due to the hallucination issue. Besides, the
limitation on the input length of LLMs makes it di$cult for them to read the entire content of a
relational table, and !nd a high-!delity coreset to guide the correction of dependency violations.

3 A Data Cleaning Framework
In this section, we introduce our end-to-end data cleaning framework GIDCL for detecting and
repairing all errors in a relational table with three main components, including (a) a graph structure
learning model that captures the correlation among tuples and attributes for manual labeling
and clustering; (b) a creator-critic work#ow that involves prompting LLMs and !ne-tuning PLMs
for error detection, and (c) a graph-enhanced error correction based on LLMs and graph neural
network.

We de!ne Tcoreset as a set of cells in T identi!ed as clean ones with high con!dences, and 𝑆 det𝑁 as
an error detection function for the 𝑇-th attributes to detect whether their values are erroneous.

Architecture. The ultimate goal ofGIDCL is to identify and repair erroneous cells in T . As depicted
in Figure 2, GIDCL initializes the process by transforming T into a directed attribute graph G,
facilitating the clustering of semantic and structural similar tuples through a graph structure
learning strategy. Subsequently, GIDCL recommends a maximum of 𝑂 representative tuples to
users for manual labeling. Following this, a creator-critic work#ow is invoked, which harmonizes
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Fig. 2. Overview of GIDCL

the capabilities of LLMs and PLMs to enhance the performance for error detection while ensuring
relatively fast execution time. Finally, leveraging the structural information gleaned by GNNs,
GIDCL augments LLMs to correct errors in a retrieval-augmented generation manner, utilizing
representative examples as in-context demonstrations.
More speci!cally, GIDCL consists of three phases, including (1) graph structure learning for

manual labeling; (2) a creator-critic work#ow for error detection, and (3) a !ne-tuned graph-
enhanced LLMs for error correction.
(1) Graph structure learning GSL. In this phase, GSL trains a graph neural network GNN to learn

the structural information of T . Formally, the input and output of GSL are as follows.
↔ Input: T , the number of clusters 𝑈 , and the labeling budgets 𝑂 .
↔ Output: 𝑂 representative tuples that need to be labeled by users, a directed attribute graph G

constructed from T , cluster division C learned from G.
By taking T as the input,GSL partitions tuples 𝐿 ↑ T into 𝑈 clusters according to their similarities

in the Euclidean space and picks up 𝑂 tuples for user labelling. Notably, we !rst transform T to a
graph G and apply GSL to obtain an embedding for each tuple, ensuring similar tuples are grouped
into the same clusters; then a novel selection strategy is designed to pick up 𝑂 representative tuples
that requires labelling by users.
(2) Error detection GIDCLdet. The error detection component in GIDCL named GIDCLdet employs

a creator-critic work#ow to identify potential errors by combining the capabilities of PLMs and
LLMs. The formal input and output are as follows.
↔ Input: T , a set Tlabel of 𝑂 user-labeled tuples that are clean.
↔ Output: A set of cells Terr identi!ed as erroneous ones, the coreset Tcoreset identi!ed as clean
cells with high con!dences, and self-generated training data Tpseudo.

(i) Critic of GIDCLdet. GIDCL incrementally !ne-tunes a small PLM model to predict whether each
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cell in T is erroneous or not, acting as critic. By utilizing Tlabel as training instances and set of pseudo
clean tuples Tpseudo generated by LLMs as inputs, we !ne-tune a classi!er Mdet over a few epochs.
Following !ne-tuning, Mdet scrutinizes all cells in T and outputs the result (Terr,Conf), where
Terr = {𝐿𝑁, 𝑂 |Mdet (𝐿𝑁, 𝑂 ) = True} is the set of all erroneous cells in T , and Conf records con!dence
scores of all cells as inferred by Mdet, e.g.,Conf (𝐿𝑁, 𝑂 ) represents the con!dence level of decision
inferred by Mdet (𝐿𝑁, 𝑂 ), determined as the maximum value of the So!max layer. Then the critic will
gradually provide dirty and clean samples to LLM-based creator. The input and output of critic are
as follows.
↔ Input: Tlabel, Tpseudo and T .
↔ Output: a set of prediction results of (Terr,Conf) ↗ T andMdet.

(ii) Creator of GIDCLdet. Because the detection model Mdet is susceptible to over!tting when
!ne-tuned with few-shot Tlabel, the creator is applied to generate(create) additional training data.
This is achieved through a two-step data augmentation strategy involving iterative utilization
LLMs with various prompts.
In the !rst step, we gather both dirty and clean cells {𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 } from Tlabel and the prediction

results of Mdet, then prompt a LLM to generate a transformation function 𝑆 det𝑄𝐿
for each attribute

𝑀𝑁 ↑ A. The creator accepts 𝑆 det𝑄𝐿
if the F-measure of Tlabel after executing it for error detection

surpasses a prede!ned threshold 𝑉 . we denote F det = {𝑆 det𝑄1
, . . . , 𝑆 det𝑄𝑂

} as the detection function set.
In the second step, utilizing the accepted 𝑆 det𝑄𝐿

, a generation function 𝑆 gen𝑄𝐿
is generated by LLM,

corrupting clean cells to dirty ones according to 𝑆 det𝑄𝐿
. Speci!cally, given a cell 𝐿+𝑂,𝑁 predicted as

correct by Mdet, its dirty value is generated as 𝐿 𝑂,𝑁 = 𝑆 gen𝑄𝐿
(𝐿+𝑂,𝑁 ). Finally the creator samples a few

correct cells in attribute 𝑀𝑁 , and corrupt them to the dirty ones via 𝑆 gen𝑄𝐿
, thereby providingMdet

with additional training data Tpseudo to mitigate potential over!tting issue.
We have the formal input and output of the critic as follows.
↔ Input: Tlabel, prediction result (Terr,Conf) by Mdet.
↔ Output: augmented data Tpseudo, detection function set F det.
The interaction of the creator and critic iteratively processes until the creator cannot re!ne 𝑆 det𝑄𝐿

for all attributes. In other word, the termination condition is either (1) no 𝑆 det𝑄𝐿
would correctly

predict Tlabel with at least 𝑉 F-measure, or (2) the set of transformation function is the same as the
previous one. When the creator-critic iteration is terminated, we apply Mdet over the whole table
T , and predict the error cells Terr, while the reliable coreset Tcoreset ↑ T is also returned. We denote
the labeled data 𝑊 train = Tlabel ↓ Tpseudo.

(3) Error correction GIDCLcor. In this phase, regarding the detected error cells Terr, the error cor-

rection component GIDCLcorimplicitly !ne-tune a LLM-based correction modelMcorr, to directly
generate correction values; and explicitly prompting LLM to extract the correction pattern for
repairing errors. Assembling the above corrections, GIDCLcorfurther updates GSL for repairing
dependency violations. The formal input and output are as follows.
↔ Input: labeled data Tlabel, error cells Terr to be repaired, clean cells Tcoreset, error detection model
Mdet and function set F det.

↔ Output: the cleaned table T ↘

𝑇𝑈𝑉𝑊𝑀 by repairing all errors in Terr.

(i) LLM-based correction model. We enhance the LLM-based correction model Mcorr through a
combination of in-context learning and supervised !ne-tuning. This approach re!nes the model to
accurately generate correct data cells when provided with their erroneous versions and relevant
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contextual information. The contextual information includes labeled examples from Tlabel and
high-quality ones from Tpseudo generated by GIDCLdet. The formal input and output are as follows.
↔ Input: labeled data Tlabel, clean cells Tcoreset, Tpseudo.
↔ Output: the generative correction model Mcorr.

(ii) LLM-generated correction function 𝑆 corr𝑄𝐿
.We also design explicit function for error correction.

By taking Tlabel as input, we query LLM to return a correction function 𝑆 corr𝑄𝐿
for 𝑀𝑁 , referencing the

accepted detection function 𝑆 det𝑄𝐿
. Considering that one cell could be repaired by both of explicit

and implicit functions, we treat Mdet as a ranking model to select the most suitable one.
↔ Input: labeled data Tlabel, error cells Terr to be repaired, detection module GIDCLdet, correction
model Mcorr.

↔ Output: repaired table Tclean, correction function set F corr.

(iii) Considering inconsistencies might exist in data, we further re-train the embeddings of tuples
in T after T is cleaned by LLMs as Tclean, by updating G and GSL. According to the correlations
among detected clean data Tlabel ↓ Tcoreset, we discover a few functional dependencies FDs, and
apply them as the !nal step to clean the remaining dependency errors in Tclean.
↔ Input: repaired table Tclean, graph G

↔ Output: cleaned table T ↘

clean, discovered dependencies FDs.
In a word, GIDCL takes a relational table T and up to 𝑂 user-labeled data Tlabel as input, and

output the cleaned table T
↘

clean, with a set of interpretable patterns, containing error detection
functions F det, error correction functions F corr and functional dependencies FDs for further user
veri!cation.

4 Graph Structure Learning for labeling
In this section, we !rst develop a graph structure learning approach to learn representations of
tuples in T in an unsupervised manner and cluster them into 𝑈 groups. Next we propose a simple
but e"ective tuple selection strategy to select 𝑂 representative tuples for users to manually label.

Graph construction.We transform T into a directed attribute graph G = (𝑋 , 𝑌, 𝑍), such that each
edge 𝑎 ↑ 𝑌 is represented as a triplet 𝑎 = (𝐿𝑁 ,𝑀 𝑂 , 𝐿𝑁, 𝑂 ), where 𝐿𝑁 , 𝑀 𝑂 and 𝐿𝑁, 𝑂 is the 𝑇-th tuple of T , the
𝑏-th attribute of A and the value of the cell in T [𝑇, 𝑏], respectively. Each vertices 𝑐 ↑ 𝑋 and edge
𝑎 ↑ 𝑌 contains attributes, denoted as 𝑐 .𝑑 = 𝐿𝑁 , 𝑎 .𝑑 = 𝑀 𝑂 respectively. We treat G as multi-relational
graph[92, 99], which structure is similar with knowledge graph.

Example 2: Consider tuples 𝐿1, 𝐿2 with ProviderID, City, County in Table 1 as an example. 5 vertices
and 6 edges are created to construct a graph, such that 𝑋 = {𝐿1, 𝐿2,Monticello, 111303, Jasper} and
𝑌 = {(𝐿1,City,Monticello), (𝐿2,City,Monticello), (𝐿1, PrivoderID, 111303),
(𝐿2, ProviderID, 111303), (𝐿1,County, Jasper), (𝐿2,County, Jasper)}. !

Inspired by [98], we design a value function 𝑄 to measure whether each possible triple 𝑎 exists in
G, i.e., 𝑄 (𝑎) = 1, or not, i.e., 𝑄 (𝑎) = ≃1. Our main goal is to learn 𝑆 such that higher 𝑆 (𝑎) indicates
higher probability that 𝑎 exists.

Graph representation learning. To learn the scoring function 𝑆 (𝑎), we adopt the Knowledge
Graph Embedding approach (KGE), which maps the vertices in 𝑋 into continuous low-dimensional
vectors while preserving their semantic meanings. If two tuples in T has similar structural infor-
mation, their embeddings in the hidden space should be close with each other. We conduct the
following pipeline to learn these vectors.
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(a) Training data construction. Besides the real triples in 𝑌, we automatically generate𝑒 fake triples
by corrupting𝑓 and 𝐿 in each triple 𝑎 = (𝑓, 𝑔 , 𝐿) by using some heuristic corruption strategies [92, 98]
for each real triple. After corrupting all triplets in 𝑌, we generate fake tuples and create the training
set Gtrain, such that 𝑄 (𝑎) = 1 for true triples 𝑎 and -1 for fake ones. We set 𝑒 as 1 by default,
following the setting of existing work[92].
(b) Initialization of embeddings.We adopt a PLM SentenceBert [88] to generate initial embeddings
of all vertices and edges in G, such that the latent semantic correlations are more likely to be
maintained and noises in T are tolerated. More speci!cally, for each vertex or edge, denoted by 𝑕,
we !rst serialize it to a sequence serial(𝑕) and then adopt SentenceBert with pre-trained model
bge-large-en to transform it to a high-dimensional embedding, s.t., u = SentenceBert(serial(𝑕)),
where u is the initial embedding of 𝑕.
(c) Self-supervised learning. We apply ComplEx [98] as scoring function 𝑆 (𝑎), with GNN-style
method CompGCN [99] to learn embedded vectors for all vertices in𝑋 . Loss function is de!ned as:

𝑆 (𝐿) = ⇐ (⇒𝑖𝑋 , 𝑎𝑃, 𝑎𝐿 ⇑)

𝑍𝑗𝑘𝑘 (ω) = ≃
1

(1 +𝑒) |ω|

∑
(𝑃,𝑋 ,𝐿 )↑𝑌

𝑄 log 𝑙 (𝑆 (𝑓, 𝑔 , 𝐿)) + (1 ≃ 𝑄) log(1 ≃ 𝑙 (𝑆 (𝑓, 𝑔 , 𝐿))) (1)

where e𝑃 and e𝐿 are embedding vectors of vertices 𝑓 and 𝐿 ,𝑖𝑋 is a relation parameter,⇐ is the
real part of a complex vector, ⇒·⇑ is the trilinear product of (𝑓, 𝑔 , 𝐿) embedding vectors, and e𝐿 is
the complex conjugate of vector e𝐿 . ω is a set of embeddings of all vertices and edges in 𝑚 , and
𝑙 is the logistic sigmoid function. We use CompGCN because it can incorporate multi-relational
information with GNN via node aggregation, and leverage the advantage of KGE techniques for
better understanding of high-dimensional dependencies in T across di"erent tuples and attributes.

Representative tuple selection. We !rst formalize our objective function and then give our
solution to select representation tuples.
Objective function. We aim to !nd 𝑂 tuples that are inclined to be erroneous and their errors are
representative. We formulate the representative tuple selection as the bilevel optimization problem.

min
𝑍 ⇓𝑆, |𝑍 |=𝑎

(

∑
𝐿 ↑𝑍

∑
𝑏↑B𝑃

dist(𝐿, 𝑅)) s.t. min
B

(

𝑐∑
𝑑=1

∑
𝐿𝐿 ,𝐿 𝑀 ↑B𝑄

dist(𝐿𝑁 , 𝐿 𝑂 )) (2)

where B = {B1, . . . ,B𝑐 } are 𝑛 non-overlapped partitions.
Solution. Following the acquisition of embeddings for all tuples, we !rst adopt the clustering strategy
to partition T into 𝑛 partitions, and then separately select the outlier tuples from these partitions.
More speci!cally, we employ the straightforward 𝑈-means clustering technique to partition T into
𝑈 groups C = {𝑜1,𝑜2, . . . ,𝑜𝑑 }. To generate training data for error detection and correction, GIDCL
presents the top-𝑂 most ambiguous tuples to users as these tuples exhibit signi!cant uncertainty
and learning them is likely to yield substantial information gain compared to others.
To identify the most ambiguous tuples, we compute the average cosine similarity within each

cluster, i.e., Dist(𝑜𝑈 ) =
∑
({cos(𝑎𝑁 , 𝑎 𝑂 ) |𝑎𝑁 ↑ 𝑜𝑈 , 𝑎 𝑂 ↑ 𝑜𝑈 , 𝑇 ω 𝑏})/|𝑜𝑈 |. and select 𝑂 clusters with

the lowest average cosine similarity. Subsequently, within each cluster 𝑜𝑈 , we identify the most
anomalous vertex 𝑐𝑁 to construct the labeled training data Tlabel for subsequent error detection and
correction tasks.

Example 3: In Table 1, a well-trained graph G will assign tuples 𝐿4, 𝐿5, 𝐿6, 𝐿7 into the same cluster
C. In C, 𝐿5 is the the outlier vertex, since 𝐿5 has little correlations with other vertices compared to
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other ones. Thus we add 𝐿5 into Tlabel. !

Remark. The most ambiguous tuples are erroneous ones in most cases. Based on the assumption
that T contains small number of errors and erroneous tuples have explicit or implicit inconsistencies
with others, error detection is equivalent to anomaly detection of tuples in a learned latent space.
Thus, the most ambiguous tuples detected by graph representation learning are more likely to be
erroneous ones. By integrating other strategies to enhance the training data (Section 5 and 6), the
class-imbalance issues could be reduced. As evaluated in Section 7, the ratio of erroneous cells in
the training data to !ne-tune GIDCLcoris 45.87% on average, which veri!es that enough erroneous
cells are selected to learn.

5 A Creator-Critic Workflow for Error Detection
In this section, we combine PLMs and LLMs for error detection, given a limited labelled examples
Tlabel. In particular, we propose a creator-critic work#ow that jointly !ne-tunes a PLM-based
classi!er Mdet as detector, and re!ne an interpretable LLM-generation function set F det for error
detection. The proposed work#ow could e"ectively preventMdet from over-!tting to the limited
labelling examples, and incorporate LLMs to generate interpretable patterns for error detection,
over all attribute in T .

Error detectionmodelMdet.We develop an error detectionmodelMdet using a set of labeledTlabel
and pseudo-labeled Tpseudo tuples as training data, denoted as 𝑊 train. The model, which incorporates
a pre-trained PLM with bi-level context attention [25], identi!es each cell 𝐿𝑁, 𝑂 in T as clean or
dirty. This is achieved by mapping a serialized sequence of the cell to a binary label 0, 1, where 0
(resp. 1) denotes a clean (resp. dirty) cell, framing the task as sequence classi!cation [72]. Notably,
the detection of a potentially erroneous cell relies on two key contextual dependencies: (1) row-
contextual dependency that errors are correlated to values of other attributes within the same row,
and (2) column-contextual dependency that errors are associated with other values in the same
column within the same clusters.
Given a cell 𝐿𝑁, 𝑂 , we incorporate the aforementioned dependencies into the input forMdet. The

main idea is that we serialize 𝐿𝑁, 𝑂 with contexts along both the 𝑇-th row and 𝑏-column. (1) For
the row-contextual dependency, we serialize the entire row 𝐿𝑁 to aidMdet in identifying attribute
correlations within the same row. (2) For the column-contextual dependency, we select distinct
values from attribute 𝑀 𝑂 of all tuples in the same cluster as 𝐿𝑁 , denoted by 𝑜 (𝐿𝑁 ) [𝑀 𝑂 ]. Thus, the !nal
input serial(𝐿𝑁, 𝑂 ) forMdet is represented as follows.

serial(𝐿𝑁, 𝑂 ) =
{
serial(𝐿𝑁 ) [SEP]serial(𝐿𝑁 [𝑀 𝑂 ]) (row-context)
serial(𝑜 (𝐿𝑁 ) [𝑀 𝑂 ]) [SEP]serial(𝐿𝑁 [𝑀 𝑂 ]) (column-context)

where serial(𝐿𝑁 [𝑀 𝑂 ]) only serializes the value of 𝐿𝑁, 𝑂 itself; serial(𝐿𝑁 ) and serial(𝑜 (𝐿𝑁 ) [𝑀 𝑂 ]) are se-
rializations of 𝐿𝑁 and 𝑜 (𝐿𝑁 ) [𝑀 𝑂 ] following the format in [110] based on tags ⇒COL⇑ and ⇒VAL⇑.

Example 4: Consider (𝐿3, 𝐿+3 ) ↑ Tlabel in Table 1 for the 2nd attribute ProviderID. We generate the
sequence serial(𝐿3,2) and serial(𝐿+3,2) w.r.t. row and column-contextual dependencies as follows.

(1) For cell 𝐿3,2, its row-context serialization is:
“⇒COL⇑ProviderID⇒VAL⇑1x1303⇒COL⇑City⇒VAL⇑Monticello⇒COL⇑State⇒VAL⇑AR⇒COL⇑

Zip⇒VAL⇑71655⇒COL⇑County⇒VAL⇑Drew[SEP]⇒COL⇑ProviderID⇒VAL⇑1x1303”.
Also its column-context dependency is
“⇒COL⇑ProviderID⇒VAL⇑111303⇒VAL⇑1x1303⇒VAL⇑10001[SEP]⇒VAL⇑1x1303".
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The labels of the two serializations are 0, indicating 𝐿3,2 is a negative instance.
(2) For clean cell 𝐿+3,2, we also serialize it as:

“⇒COL⇑ProviderID⇒VAL⇑111303⇒COL⇑City⇒VAL⇑Monticello⇒COL⇑State⇒VAL⇑AR⇒COL⇑
Zip⇒VAL⇑71655⇒COL⇑County⇒VAL⇑Drew[SEP]⇒COL⇑ProviderID⇒VAL⇑111303”, and

“⇒COL⇑ProviderID⇒VAL⇑111303⇒VAL⇑1x1303⇒VAL⇑10001[SEP]⇒VAL⇑111303”.
We label them as 1 as positive ones. !

After serialization, we !ne-tune Mdet (serial(𝐿𝑁, 𝑂 )) using the Cross-Entropy as the loss function.
In the inference process, we serialize all cells in T and identify erroneous ones using Mdet.

LLMs-generated interpretable function for error detection. Existing error detection ap-
proaches, e.g.,Raha [70] and activeClean [58], are hard to learn or discover generalized and inter-
pretable patterns only based on the observation from few-shot examples without prior knowledge
injected by human experts. However recently [15] found that LLMs are few-shot learners and
could extract the generalized patterns to distinguish clean and dirty values with limited labeled
examples, acting like a data scientists [17, 75]. We follow its idea to generate a set of error detection
functions with delicately handcrafted prompts in a multi-turn interaction.

In detail, for the !rst cycle of interacting with the LLM, we denote the set of unique values in 𝑀 𝑂

of T by 𝑐 (𝑀 𝑂 ) as contextual information, and query LLM by serializing all the dirty and clean cell
pairs Tlabel, as LLM(𝑅1,Tlabel, 𝑐 (𝑀 𝑂 )), and the returned result is an interpretable function 𝑆 det𝑄 𝑀

, which
can detect whether a given cell 𝐿𝑁, 𝑂 in 𝑀 𝑂 is dirty or not. 𝑅1 is a handcrafted prompt of generating a
detection function. We restrict LLM to generate function with regular expression, which is proved
to be e"ective in DC [84].
To evaluate the quality of generated 𝑆 det𝑄 𝑀

, we apply 𝑆 det𝑄 𝑀
over the labelling set Tlabel to identify

whether each cell is dirty or not. If the performance for 𝑆 det𝑄 𝑀
on Tlabel is above the prede!ned

threshold 𝑉 in F-measure, we accept 𝑆 det𝑄 𝑀
as a reliable detection function; otherwise, for all the

examples that are wrongly detected, denoted by T
wrong
label , we start the next conversation such that

LLM(𝑅2,T
wrong
label , 𝑐 (𝑀 𝑂 )), and a new function 𝑆 det𝑄 𝑀

is generated and replaced with the old one. Here
𝑅2 is a new prompt that considers the wrongly predicted instances. The iteration of conversations
continues until the number of rounds reaches the maximum iteration 𝑁↘, or all dirty and clean
instances in Tlabel are evaluated by 𝑆 det𝑄 𝑀

such that the F-measure is at least 𝑉 ; otherwise we do not
accept 𝑆 det𝑄 𝑀

and only rely on Mdet for error detection.

Example 5: In Table 1, consider (𝐿1, 𝐿+1 ), (𝐿2, 𝐿
+

2 ) ↑ Tlabel. To generate the interpretable 𝑆 detState for
the 4th attribute State, the input fed in LLMs in the !rst conversation is as follows.
↔ Instruction 𝑅1: Please conclude a general pa!ern for dirty and clean cells, and write a general function
with regular expression to detect whether a given cell is dirty or not.

↔ Demonstration Tlabel: [VA,Jasper→VA; VAA→VA]
↔ Values 𝑐 (𝑀 𝑂 ): [VA; VAA; AL; · · · ]
The output function from LLM is 𝑆 detState = ˆ[A-Z]+$, meaning clean values in State should be

composed of upper letters. However it wrongly detects VAA of 𝐿2 as a clean one. Thus we continue
with the second conversation for re!nement. The input is as follows:
↔ Instruction 𝑅2: Please conclude a general pa!ern for dirty and clean cells, regarding the provided wrongly
detected cells.

↔ Demonstration T
wrong
label : [VAA→VA]

↔ Values 𝑐 (𝑀 𝑂 ): [VA; VAA; AL; · · · ]
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The re!ned function from LLM is 𝑆 detState=ˆ[A-Z]2$, meaning clean values in State should begin
with the !rst two upper letters. Now the function is !nalized because it satis!es all instances in
Tlabel. !

We could further adopt the LLM-generated functions to augment more training data. Once
𝑆 det𝑄 𝑀

is accepted, we query LLM to generate the interpretable corruption function 𝑆 gen𝑄 𝑀
=

LLM(𝑅3,Tlabel, 𝑆 det𝑄 𝑀
, 𝑐 (𝑀 𝑂 )), which is used to generate dirty values from clean ones, acting as a

customized data augmentation operator. Next, we select all the clean values in 𝑀 𝑂 that matches the
previous 𝑆 det𝑄 𝑀

, and use 𝑆 gen𝑄 𝑀
to generate similar error data Tpseudo, such that for 𝐿pseudo𝑁, 𝑂 ↑ Tpseudo, we

have 𝐿pseudo𝑁, 𝑂 = 𝑆 gen𝑄 𝑀
(𝐿+𝑁, 𝑂 ). These data will be added to 𝑊 train and are used to incrementally !ne-tune

Mdet.

Example 6: In Table 1, consider (𝐿3, 𝐿+3 ) ↑ Tlabel and 𝑆 detProviderID for ProviderID is generated and
accepted as a reliable one. To query LLM to generate 𝑆 gen, the input is as follows.
↔ Instruction 𝑅3: Write a function, randomly transfer clean value to dirty.
↔ Demonstration Tlabel: [1x1303 → 111303, · · · ]
↔ 𝑆 detProviderID: ˆ\d+$ (ProviderID only contains numbers).
↔ Values 𝑐 (𝑀 𝑂 ): [1x1303; 111303; 10001; · · · ]
The output function from LLM is 𝑆 gen = replace( [0, 9], x), meaning randomly replace a number of
the clean value with letter x. !

The creator-critic work!ow.We unify the aboveMdet and F
det and establish a creator-critic

work#ow for error detection, as depicted in Figure 3. Our process begins with the execution of a
creator and critic in lines 2-23, with the creator, critic, and termination phases outlined as follows.
Creator Phase. We begin by leveraging LLMs to generate patterns for distinguishing between clean
and dirty cells over each attribute 𝑀 𝑂 ↑ A. We create a function 𝑆 det𝑄 𝑀

to detect whether a given
cell is dirty or clean (line 6). This approach helps prevent LLMs from memorizing speci!c cases in
Tlabel and avoids hallucination issues. In line 7-11, the multi-turn conversations based on LLMs are
iteratively invoked until the evaluation performance of 𝑆 det𝑄 𝑀

over Tlabel, denoted by Eval(𝑆 det𝑄 𝑀
,Tlabel),

such as F-measure, exceeds a threshold 𝑉 . Otherwise, we discard the generated function.
Once 𝑆 det𝑄 𝑀

is accepted, we extend the conversation with LLM to further generate 𝑆 gen𝑄 𝑀
, which

generates similar error data Tpseudo (line 12-14). We then merge the augmented data with Tlabel to
form 𝑊 train = Tlabel ↓ Tpseudo, which is used to train the criticMdet.

Critic Phase. We serialize 𝑊 train into a set of bi-level context-aware instances, and !ne-tune the
relatively small PLM-based detection model Mdet until convergence (line 16-18). Finally, Mdet
outputs a set Tcoreset of cells identi!ed as correct ones with high con!dences to the creator. We
consider Tcoreset is as reliable as Tlabel, and can be further used in in-context learning and discovering
dependencies.
Termination Phase. Given that Mdet is trained on all attributes A = {𝑀1,𝑀2, · · · ,𝑀𝑀}, Mdet con-
verges, and the creator updates the LLMs-generated functions for all 𝑁 attributes. We execute the
creator and the critic in multiple rounds until 𝑆 det𝑄 𝑀

no longer change (line 21-22). The output of the
creator-critic work#ow is a set of detected dirty cells Terr, a set of self-generated data Tpseudo and a
set of reliable cells Tcoreset.

Remark. One advantage of our create-critic work#ow is to incrementally augment the training
data by adding Tpseudo by LLMs so that Mdet is !ne-tuned in enough training data. Such work#ow
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Input: the dirty relational table T of A, a set of labeled tuples Tlabel.
Output: A set Terr of cells identi!ed as erroneous ones, a set Tpseudo of

self-generated data, and a set Tcoreset identi!ed as clean cells.
1. Tpseudo := ⇔, Mdet := ⇔, Tcoreset := ⇔;
2. while true do
3. /* Creator */
4. F

det := ⇔, Fgen := ⇔;
5. for each 𝑄𝐿 ↑ A do
6. iter := 0, 𝑒 (𝑄𝐿 ) := T[𝑄𝐿 ], 𝑅 det𝑁𝐿

:= LLM(𝑏1, Tlabel, 𝑒 (𝑄𝐿 ) ) ;
7. while Eval(𝑅 det𝑁𝐿

, Tlabel ) ↖ 𝑓 and iter ↖ Itermax do
8. Collect Twrong

label := { (𝐿 𝑀 ,𝑄 , 𝐿+𝑀 ,𝑄 ) |1 ↖ 𝑂 ↖ |𝑆train
|,

1 ↖ 𝑑 ↖ |A |, 𝑅 det𝑁𝐿
(𝐿 𝑀 ,𝑄 ) = 1, 𝐿 𝑀 ,𝑄 ω 𝐿+𝑀 ,𝑄 }

9. 𝑅 det𝑁𝐿
:= LLM(𝑏2, T

wrong
label , 𝑒 (𝑄𝐿 ) ) ;

10. iter := iter + 1;
11. Add 𝑅 det𝑁𝐿

into F
det if Eval(𝑅 det𝑁𝐿

, Tlabel ) > 𝑓 ;
12. 𝑅 gen𝑁𝐿

:= LLM(𝑏3, Tlabel, 𝑅
det
𝑁𝐿

, 𝑒 (𝑄𝐿 ) ) ;
13. εTpseudo := {𝐿pseudo𝑅,𝐿 |𝐿pseudo𝑅,𝐿 := 𝑅 gen𝑁𝐿

(𝐿+𝑅,𝐿 ), (𝐿𝑅 , 𝐿
+
𝑅 ) ↑ Tlabel};

14. Tpseudo := Tpseudo ↓ εTpseudo;
15. /* Critic */
16. 𝑆train := Tpseudo ↓ Tlabel;
17. Generate row/column-contextual dependency for each 𝐿 ↑ 𝑆train;
18. Fine-tune Mdet using 𝑆train;
19. Select a subset εTcoreset ⇓ T with high con!dences of Mdet;
20. Tlabel := Tlabel ↓ εTcoreset, Tcoreset := Tcoreset ↓ εTcoreset;
21. if Fdet does not change do
22. break
23. Identify all errors Terr in T using Mdet;
24. return (Terr, Tpresudo, Tcoreset ) ;

Fig. 3. The Creator-critic workflow of error detection

Thought: 𝑓𝑑𝑒𝑡

: “Pattern: r'^\d+' “LLM As Creator

User Labelling
Data

Action: 𝑓𝑔𝑒𝑛

: “Self-Generate Dirty Data“
Pattern: replace([0,9],x)

Instruction:
Correct Dirty Value

In Column Zip

Detection Model 
as Critic

Model Update

Observation

35001: ✓
35x01：✖
350010：✖

: “Refine Pattern:
r'^\d{5}$ “

Error Pattern

Fig. 4. Creator-critic workflow for error detection

also alleviates the impact of training data curation based on graph structure learning (Section 4),
such that if the training data curation has the class-imbalance issue,GIDCLdetcould still be e"ective.
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Input: a set of Terr of dirty cells, a set Tlabel of labeled data, a set Tpseudo
of self-generated tuples, a set Tcoreset of data identi!ed by Mdet as
correct ones, the !ne-tuned Mdet, and a set C of data groups.

Output: the clean relational table Tclean.
1. 𝑆train := Tlabel ↓ Tpseudo, Mcorr := ⇔, Tclean := T;
2. Generate 𝑌ICL := {𝑌ICL

1 , . . . ,𝑌ICL
|A|

} of ICL context from 𝑆train;
3. Generate 𝑌RAG := {𝑌RAG

1 , . . . ,𝑌RAG
|A|

} of RAG examples from Tlabel ↓ Tcoreset;
4. Generate the training set 𝑆train

LLM using using 𝑌ICL and 𝑌RAG, s.t.,
𝑆train
LLM := { [context(𝐿𝐿,𝑀 ), 𝐿+𝐿,𝑀 ] | (𝐿𝐿,𝑀 , 𝐿

+

𝐿,𝑀 ) ↑ 𝑆train
}

5. Fine-tune Mcorr using 𝑆train
LLM ; /* implicit error correction */

6. F
corr := ⇔;

7. for each 𝑄𝐿 ↑ A do /* explicit error correction */
8. iter := 0, 𝑒 (𝑄𝐿 ) := T[𝑄𝐿 ], 𝑅 corr𝑁𝐿

:= LLM(𝑇, Tlabe, 𝑒 (𝑄𝐿 ), 𝑅 det𝑁𝐿
) ;

9. while Eval(𝑅 corr𝑁𝐿
, Tlabel ) ↖ 𝑓 and iter ↖ itermax do

10. Collect Twrong
label := { (𝐿 𝑀 ,𝑄 , 𝐿+𝑀 ,𝑄 ) | 𝑅

corr
𝑁𝑄

ω 𝐿+𝑀 ,𝑄 , (𝐿 𝑀 ,𝑄 , 𝐿
+

𝑀 ,𝑄 ) ↑ 𝑆train
};

11. 𝑅 corr𝑁𝐿
:= LLM(𝑇, Twrong

label , 𝑒 (𝑄𝐿 ), 𝑅 det𝑄𝐿 ) ;
12. iter := iter + 1;
13. Add 𝑅 corr𝑁𝐿

into F
corr if Eval(𝑅 corr𝑁𝐿

, Tlabel ) > 𝑓 ;
14. /* Error detection in T */
15. for each 𝐿𝐿,𝑀 ↑ Terr do
16. 𝐿 := argmax{Mdet (Mcorr (𝐿𝐿,𝑀 ) ),Mdet (𝑅

corr
𝑁𝑀

(𝐿𝐿,𝑀 ) ) };
17. Repair 𝐿𝐿,𝑀 of Tclean using 𝐿 ;
18. ε𝑔 := GraphStructureRelearning(Tlabel, Tcoreset, 𝑅GNN, Terr ) ;
19. Repair Tclean using ε𝑔;
20. return Tclean;

Fig. 5. The error correction algorithm

6 Error Correction
In this section, we propose an error correction algorithm for rectifying a dirty cell 𝐿𝑁, 𝑂 to the clean
value 𝐿+𝑁, 𝑂 . As depicted in Figure 5, we introduce two approaches: implicit error correction, which
involves !ne-tuning a local LLM as a generative model and the explicit error correction, which
leverages an LLM as a few-shot learner to condense generated functions. Additionally, to address
inconsistency errors, we re!ne the graph G based on tuples predicted as clean in T to discover
high-quality functional dependencies (FDs).

Implicit error correction.We combine in-context learning (ICL) [29, 74], retrieval augmented
generation (RAG) [61], and supervised !ne-tuning (SFT) to learn an error correction model Mcorr
that directly generates the true value by referencing its dirty one and some contextual information.

We leverage ICL and RAG to enhance the learning process. ICL uses correction pairs, e.g., (𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 )
from labeled data Tlabel ↓ Tpseudo to direct LLMs in correcting cells accurately, preventing irrelevant
outputs. Conversely, RAG utilizes clean examples from Tlabel ↓ Tcoreset to activate the emergent
abilities of LLMs, ensuring e"ective contextualization and application of corrections. This dual
strategy re!nes the model’s accuracy and relevancy in error correction tasks.
Speci!cally, for each (dirty, clean) cell (𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 ) ↑ 𝑊 train, we construct a sequence denoted by

context(𝐿𝑁, 𝑂 ) for !ne-tuning LLM with ICL and RAG context. In detail, context(𝐿𝑁, 𝑂 ) contains a
handcrafted prompt 𝑝, the serial representation of the cell and its context serial(𝐿𝑁, 𝑂 ), and relevant
repair examples 𝑌ICL𝑂 = {(𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 ) |𝐿𝑁, 𝑂 ↑ Tlabel ↓ Tpseudo, 𝐿𝑁, 𝑂 ω 𝐿+𝑁, 𝑂 } for ICL demonstration, and a set
𝑌RAG𝑁 of tuples sampled within Tlabel ↓ Tcoreset, also from the same cluster 𝑜𝑁 containing 𝐿𝑁 as RAG.
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The sequence format is :

context(𝐿𝑁, 𝑂 ) = 𝑝 ↔ serial(𝐿𝑁, 𝑂 ) ↔ 𝑌ICL𝑂 ↔ 𝑌RAG𝑁

The training dataset for LLM is re-organized as 𝑊 train
LLM = {[context(𝐿𝑁, 𝑂 ), 𝐿+𝑁, 𝑂 ] |𝐿𝑁, 𝑂 ↑ 𝑊 train

}, where
𝐿+𝑁, 𝑂 is the correct value as label. We further !ne-tune a local LLM Mcorr using the LoRA technique
[52]. During inference, we serialize the context of an erroneous cell 𝐿𝑁, 𝑂 ↑ Terr into context(𝐿𝑁, 𝑂 ) and
obtain the corrected value via Mcorr (𝐿𝑁, 𝑂 ).

Example 7: Consider 𝐿2 in Table 1 andMdet detects VAA of the 3rd attribute State as a dirty cell.
To repair it, we generate the sequence context(𝐿2,3) that consists of the following components.
↔ Instruction 𝑝 = Given the dirty row, you are required to correct the value in column State.
↔ Input serial(𝐿2,3) = {City : Monticello, State : VAA, · · · }
↔ ICL Demonstration: [AL,Houston → AL]
↔ RAG Context: serial(𝐿+1 ) = ⇒COL⇑ProviderID⇒VAL⇑111303⇒COL⇑City⇒VAL⇑Monticello⇒COL⇑State
⇒VAL⇑VA⇒COL⇑Zip⇒VAL⇑31064⇒COL⇑County⇒VAL⇑Jasper.

Here 𝐿+1 and 𝐿2 are in the same cluster and 𝐿+1 ↑ Tlabel. Finally Mcorr recti!es 𝐿2,3 to VA. !

Remark. Beside Tlabel, we also adopt Tcoreset, the high-quality training data from Mdet, to construct
RAG, and Tpseudo, the training data by leveraging LLMs to !ne-tune Mcor. More speci!cally, we
designed various data augmentation strategies to enhance the training data so thatMcor is more
accurate and robust.

Explicit and interpretable error correction.While the generative modelMcorr excels at handling
intricate corrections, such as transforming bxrmxngha to birmingham, it encounters simpler tasks
where a more transparent approach can be bene!cial. For example, tasks like converting 16.0 ounces
to 16 or reformatting dates from yyyy/dd/mm to dd/mm/yy might not necessitate the full generative
capabilities of LLMs. In such cases, querying LLMs to generate an interpretable function 𝑆 corr𝑄 𝑀

tailored for error correction speci!c to an attribute𝑀 𝑂 ↑ A presents a viable alternative. Thismethod
not only simpli!es the correction process but also helps in mitigating the potential hallucination
issues associated with LLMs, ensuring that corrections are both accurate and straightforward.

Similar with generating 𝑆 gen𝑄 𝑀
with LLM in Section 5, we employ the following query by extending

existing conversation with LLM: 𝑆 corr𝑄 𝑀
= LLM

(
𝑞,Tlabel, 𝑐 (𝑀 𝑂 ), 𝑆 det𝑄 𝑀

)
, where 𝑞 is a handcrafted prompt

instructing the LLM to generate a function for error correction. The expected output 𝑆 corr𝑄 𝑀
is a

function that transforms a dirty cell 𝐿𝑁, 𝑂 to its clean value. 𝑆 corr𝑄 𝑀
is accepted only if it achieves a

higher F-measure than a given threshold 𝑉 over Tlabel, similar to 𝑆 det𝑄 𝑀
.

Example 8: Consider 𝐿5 in Table 1 and Mdet detects AL,Houston of the 4-th attribute State is dirty.
We query 𝑆 corrState using:
↔ Instruction 𝑞: Please write a function to correct the dirty value to clean.
↔ Demonstration [𝐿𝑁, 𝑂 , 𝐿+𝑁, 𝑂 ]: [VA,Jasper → VA]
↔ Context 𝑐 (𝑀 𝑂 ): Clean: [VA,AL, ...]; Dirty:[VA,Jasper, ...]
↔ 𝑆 det𝑄 𝑀

: ˆ[A-Z]{2}$,(State should be 2 upper letters)
Finally 𝑆 corrState (𝐿𝑁, 𝑂 ) = 𝐿𝑁, 𝑂 [:2].upper() for State, which is interpretable, and 𝑆 corrState (𝐿5,4) = AL. !

Repair selection. Considering Mcorr (𝐿𝑁, 𝑂 ) and 𝑆 corr𝑄 𝑀
(𝐿𝑁, 𝑂 ) for correcting 𝐿𝑁, 𝑂 might be di"erent. We

design a simple but e"ective ranking method based on the error detector Mdet to pick up the
most suitable one. Recall Mdet is a binary classi!er to identify whether 𝐿𝑁, 𝑂 is dirty or not with
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a con!dence score Conf (𝐿𝑁, 𝑂 ), i.e., the output of the So!max layer. To select the suitable repair
of 𝐿𝑁, 𝑂 , we compute and compare the con!dence scores of Conf (Mcorr (𝐿𝑁, 𝑂 )) and Conf (𝑆 corr𝑄 𝑀

(𝐿𝑁, 𝑂 )).
The value with a larger con!dence score is the !nal repair, denoted as GIDCLcor (𝐿𝑁, 𝑂 ). By applying
GIDCLcor over all erroneous cells Terr, we can repair the dirty table T to Tclean, and update the
constructed graph G to G

↘ with Tclean accordingly.
Although LLM-based error correction above is able to give the repair suggestions by referencing

correlated tuples and contexts, it might not always give exact corrections for inconsistency errors,
because LLM may not extract and understand violation of attribute dependencies (VAD) across
the whole relational table. Considering this issue, we update the graph structure to discover a few
functional dependencies(FDs) based on tuples that are more likely to be clean.

Re-learning graph structure. After cleaning T using GIDCLcor, we then apply Mdet to select a
few tuples Tcoreset that have high con!dence scores, i.e., high qualities. Then we focus on mining
FDs in Tcoreset ↓ Tlabel and repair inconsistencies using graph structure learning based on the mined
FDs.
FDs discovery. For simplicity, we only consider discovering FDs : 𝑟 → 𝑠 , where 𝑟 and 𝑠 are single
attributes. In the discovery process, we enumerate all pairs of attributes (𝑀𝑁 ,𝑀 𝑂 ) to check whether
𝑀𝑁 → 𝑀 𝑂 and 𝑀 𝑂 → 𝑀𝑁 are valid FDs in Tcoreset ↓ Tlabel, where 𝑀𝑁 ,𝑀 𝑂 ↑ A. The process needs
O(|T ||A|

2
) time complexity.

Graph Learning. For each valid FD : 𝑀𝑁 → 𝑀 𝑂 , we extract the sub-graph G
↘

sub from G
↘ such that

G
↘

sub = {(𝑓, 𝑔 , 𝐿) |𝑔 ↑ {𝑀𝑁 ,𝑀 𝑂 }}. Then we re-cluster G↘ into 𝑈 clusters such that if tuples 𝐿𝑁 and
𝐿 𝑂 reside in the same cluster, they share identical values of at least one attribute of 𝑀𝑁 and 𝑀 𝑂 .
Considering a central node 𝑓𝑁 within cluster 𝑜𝑁 of the sub-graph G

↘

sub, we modulate the weight of
each directed edge 𝑎 in G

↘

sub utilizing the message passing function 𝑡 (𝑓, 𝑔 , 𝐿), de!ned as:

𝑡 (𝑓, 𝑔 , 𝐿) =



1 if 𝑓𝑁 ↑ Tlabel
1/|𝑜𝑁 | if 𝑓𝑁 ↑ Tcoreset
1/𝑢 |𝑜𝑁 | if 𝑓𝑁 ε Tcoreset

(3)

Given that Tlabel represents the ground truth, it is imperative to prioritize its aggregation within
the cluster.WhileTcoreset likely approximates the ground truth, its aggregation is accorded secondary
priority, ensuring its cumulative weight does not surpass that of Tlabel. Conversely, cleaned cells
should aggregate with minimal priority. The hyper-parameter 𝑢 modulates this prioritization.
Error correction. Upon updating the edge weights in G

↘

sub by clusters, we apply link prediction
task[26] in trained G↘

sub for attribute𝑀 𝑂 on a cluster basis. In detail, we utilize the modi!ed𝑡 (𝑓, 𝑔 , 𝐿)
to update edge weight for G↘

sub, then retrieving re!ned node embedding ω with Eq.1. Given node
embedding ω(𝑓𝑁 ) and edge embedding ω(𝑀 𝑂 ), link prediction task aims to !nd the most similar
embedding ω(𝐿), where cell 𝐿 ↑ T [𝑀 𝑂 ] also lies within cluster 𝑜𝑁 .

This implies that if a node 𝐿𝑁 ↑ Tlabel exists within cluster𝑜𝑁 , the user-labeled ground truth, noted
as triplet (𝑓𝑁 ,𝑀 𝑂 , 𝐿), should be universally applicable to all central nodes 𝑓𝑑 ↑ 𝑜𝑁 . In the absence
of labeled data within cluster 𝑜𝑁 , the weighted majority value of attribute 𝑀 𝑂 is designated to all
central nodes 𝑓𝑑 ↑ 𝑜𝑁 , via the node aggregation mechanism of GNN. Besides, such aggregation is
limited into relations in FDs, and controlled by 𝑡 in Eq.3, preventing the over-smoothing issues
with GCN, which propagate noise information over the whole graph.

Example 9: Consider CProviderID in Table 1, where |CProviderID |=4, and the aggregated weight
𝑡 (𝑓,City,Dothan) = 3

4 (𝐿5, 𝐿6, 𝐿7 ↑ Tcoreset), 𝑡 (𝑓,City,Monticello) = 1
4𝑢 (𝐿4 ε Tcoreset), so the value of

City in 𝐿4, 𝐿5, 𝐿6, 𝐿7 should be uni!ed as Dothan. !
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This correction procedure iterates across all elements with FDs to get the !nal correction result.

Remark. GIDCLcoris capable to solve data imputation on missing values by leveraging its implicit
error correction and re-learning graph structure, such that the implicit error correction Mcorr
imputes missing values in the generative way, and re-learning graph structure imputes values
based on the dependencies of other values.

7 Experimental Study
Using standard datasets, we empirically evaluated our method GIDCL on (1) the e"ectiveness
and e$ciency of error detection and correction, (2) the robustness on the impact of error rate
and labelling budgets 𝑂 , (3) the e"ectiveness of the creator-critic framework and automatically
generated function set F , and (4) the impact of parameter size for LLMs.

Experimental settings. We start with our settings.
Datasets. We use 5 benchmark datasets following the settings in the existing literature Baran [68]
and one real-life large dataset .

Hospital [89] and Flights [64] o"er rich contextual information with a high degree of data
redundancy. Notably, Hospital has scarce and randomly imposed noises, while Flights exhibit a
very high error rate. Tax is a large synthetic dataset from the BART repository [7], featuring various
data error types, thus resulting in a vast search space to identify true corrections. Beers [68] and
Rayyan [77] are also real-life datasets but lack data redundancy, posing challenging for correction.
IMDB [1] is a large real-life dataset encompassing millions of movies and TV series spanning from
1905 to 2022, and contains various error types that are nontrivial to repair.

Following [68, 79], we have the clean data as the ground truth and dirty data for evaluation.
For Beers, Flights and Rayyan, the dirty data contains real-life noises and cleaned by data owners,
while for the remaining datasets, the dirty data is generated by adding noise with a certain rate
e%, i.e., the percentage of dirty cells on all data cells. We introduce four types of noise, including
missing value (MV), typo (T), formatting issue (FI), and violated attribute dependency (VAD). Detail
is provided in [2].
Baselines.We implemented GIDCL in Python and used the following baselines. (1) Raha [70], an
error detection method involving feature engineering, interactive labeling and ML models for
detection; (2) Rotom [72], a meta-learning data augmentation framework that formulates tabular
error detection as a seq2seq task; (3) Robertadet [65], a binary classi!er adapted for error detection
utilizing the pre-trained language model Roberta [65]; (4) Baran [68], a hybrid error correction
approach based on feature engineering and traditional ML models; (5) Garf [79], a deep learning-
based error correction approach that employs SeqGAN [106] to generate data repair rules in an
unsupervised manner; (6) HoloClean [89], an error correction method that leverages data quality
rules to construct factor graph for data repairs; (7) T5 [85], a generative PLM for error correction;
(8) JellyFish-13B [107], an LLM-based method addressing error detection and data imputation
seperately, utilizing a 13B LLM to solve multiple data preprocessing tasks.
All error correction methods followed end-to-end data cleaning pipelines. This implies that

for each method, the range of error correction relies on its error detection results. Among error
correction methods lacking the support of error detection, we adopt Raha as the error detection
for Baran as referenced in [69]. For the remaining error correction methods, including HoloClean
and T5, we utilized our error detection method GIDCLdetfor fair comparison.
Measures. We report precision (P), recall (R), and the F1 (F) score to evaluate the e"ectiveness
for error detection and error correction, the same with [70] and [68]. We also report the runtime
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Table 3. Error detection performance in comparison to the baselines

System Hospital Flights Beers Rayyan Tax IMDB
P R F P R F P R F P R F P R F P R F

GIDCL 1.00 0.95 0.98 0.96 0.95 0.96 0.99 0.99 0.99 0.84 0.98 0.90 0.99 0.98 0.98 0.88 0.89 0.88
GIDCLo”line 0.96 0.90 0.93 0.96 0.95 0.96 0.99 0.97 0.98 0.76 0.94 0.84 0.99 0.98 0.98 0.97 0.68 0.80

Raha 0.96 0.67 0.79 0.85 0.93 0.89 1.00 1.00 1.00 0.88 0.88 0.88 0.84 0.77 0.80 0.28 0.37 0.32
Rotom 0.95 0.94 0.95 0.47 0.89 0.61 0.91 0.95 0.93 0.26 0.88 0.40 1.00 0.60 0.75 0.17 1.00 0.29

Robertadet 0.87 0.97 0.92 0.99 0.47 0.64 0.99 0.97 0.98 0.66 0.94 0.77 0.66 0.87 0.75 0.94 0.18 0.30
JellyFish 0.87 0.91 0.89 0.55 0.85 0.67 0.89 0.75 0.81 0.66 0.72 0.69 0.66 0.87 0.75 0.25 0.85 0.38

for model training and inference and show the number of labeled tuples to evaluate the human
involvement and impacts for baselines.
Con#guration. We select RoBERTa as the backbone for Mdet, and Mistral-7B [55] as the backbone
model for Mcorr. We adopt gpt-4-turbo as the online reference LLM to generate function set F
as default setting, denoted as GIDCL , and apply Mistral-7B as o%ine reference LLM, denoted as
GIDCLo”line. All prompts in GIDCL are handcrafted once and listed in [2]. The default 𝑂 label = 20,
𝑉 = 0.85 and 𝑢 = 4. The cluster number for Hospital, Flights, Beers, Rayyan, Tax, and IMDB are 20,
20, 10, 10, 30, and 50, respectively. We conduct our experiment on a single machine powered by
256GB RAM and 32 processors with Intel(R) Xeon(R) Gold 5320 CPU @2.20GHz and 4 RTX3090
GPUs. Each experiment was conducted twice, averaging the results reported here.

Experimental results. We next report our !ndings.

Exp-1: E$ectiveness.We evaluated GIDCL with other baselines in terms of error detection and
correction. For fair comparisons, all baselines take the same input T and the labelling budget 𝑂 label.
Error Detection. Table 3 shows the performance of all baselines. GIDCL surpasses all baselines in 5
out of 6 datasets, achieving an average accuracy improvement of 23.1% and up to 58% in F1. This
veri!es that the creator-critic framework in GIDCL is e"ective, andMdet and F could help with
each other to boost the overall performance. Additionally, GIDCL enhances model interpretability,
and e"ectively mitigates over!tting risk through its generation functions, thereby improving the
robustness and reliability. However, GIDCLo”line has a slight performance decrease compared to
GIDCL , due to the instability of the o%ine LLM as generator of function set F , potentially leading
to failure in detecting and augmenting data on certain key attributes. Nevertheless, GIDCLo”line
still outperforms other baselines in most cases.

Raha demonstrates the comparable performance in Beers and Rayyan. However, in datasets
with richer information, in-context learning of GIDCL signi!cantly bene!ts both F

det andMdet.
Compared to Raha, GIDCL is 19%, 7%, 18% and 56% higher F-measure in Hospital, Flights, Tax
and IMDB, respectively. Rotom primarily generates random augmentations, limiting its ability to
interpret dirty and clean data patterns, leading Rotom to inferior performance in scenarios with
complex textual inconsistencies. Robertadet performs similarly to Rotom in most datasets. However,
due to a small labelling budget, Robertadet su"ers from the over-!tting problem.
It is worth noting that LLM-based error detection baseline JellyFish performs worse than non-

LLM baselines in most cases, indicating that the naive adoption of LLM falls short in error detection,
as discussed in the observation of Section 2.2.
Error correction. Table 4 shows the F1-score of error correction, andGIDCL outperforms all baselines
with 20.5% higher F1-score on average, compared to the best of others. This veri!es the e"ectiveness
of unifyingMcorr, F corr and graph structure learning. GIDCLo”line exhibits a slight performance
decline compared to GIDCL. This is attributed to the function set F generated by the o%ine
model, which may not match the quality of that produced by the online model GPT-4. Nonetheless,
GIDCLo”line still surpasses other baselines, e.g., 16% higher F1-score than the best of others on
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Table 4. End-to-end error correction performance in comparison to the baselines

System Hospital Flights Beers Rayyan Tax IMDB
P R F P R F P R F P R F P R F P R F

GIDCL 0.97 0.96 0.97 0.94 0.92 0.93 0.97 0.97 0.97 0.80 0.93 0.86 0.95 0.94 0.95 0.87 0.89 0.87
GIDCLo”line 0.94 0.90 0.92 0.84 0.81 0.82 0.95 0.95 0.95 0.78 0.85 0.81 0.89 0.89 0.89 0.79 0.80 0.80

Raha + Baran 0.95 0.52 0.67 0.84 0.56 0.67 0.93 0.87 0.90 0.44 0.21 0.28 0.84 0.77 0.80 0.19 0.08 0.12

GIDCLdet+ Holoclean 0.98 0.71 0.82 0.89 0.67 0.76 0.01 0.01 0.01 0.00 0.00 0.00 0.11 0.11 0.11 0.22 0.18 0.20

Garf 0.68 0.56 0.61 0.57 0.25 0.35 0.40 0.03 0.04 0.34 0.40 0.37 0.55 0.58 0.56 0.30 0.25 0.27

GIDCLdet+ T5 0.54 0.39 0.45 0.39 0.27 0.32 0.73 0.97 0.83 0.55 0.62 0.58 0.72 0.59 0.65 0.45 0.35 0.39

JellyFish 0.84 0.71 0.77 0.75 0.71 0.73 0.73 0.66 0.69 0.65 0.52 0.58 0.85 0.65 0.74 0.50 0.41 0.45

average.
HoloClean demonstrates relatively good precision and recall in datasets with high redundancy,

such asHospital and Flights. However, its performance degrades in datasets with lower redundancy
or fewer dependencies among attributes. In such scenarios, HoloClean is di$cult to repair errors.
Baran has a signi!cant performance drop in most datasets. The primary issue lies in its generation
of an excessive number of candidates, e.g., 455,390 candidates in total for Hospital, making it
di$cult to select the most suitable one via learning traditional ML classi!ers. The experimental
results highlight the need for a robustly trained generative model to e"ectively address such issues,
e.g.,Mcorr in GIDCL . Garf employs a SeqGAN model for unsupervised generation of data repair
rules, subsequently re!ned through a co-training framework. The generated data quality rules
might not be capable of handling unseen data. For instance, in Hospital, Garf cannot generate the
correct value Birmingham from the dirty cell Bxrmxngham if Birmingham is absent in the dataset.
The limitations of T5 are apparent in its inability to employ the retrieval-augmented generation
paradigm and to repair inconsistency errors, leading to a noticeable decline in its performance.

The LLM baseline JellyFish demonstrates the substantial potential of generative models in data
cleaning tasks. However, its performance is notably inferior to that of GIDCLo”line. This highlights
the e$cacy of our in-context learning strategy and the use of self-annotated data, which e"ectively
mitigate hallucination issues in LLMs and result in a signi!cant performance boost.
Varying di"erent error detectors/correctors. In Table 5, we further evaluate the e"ectiveness of the
proposed correction methodGIDCLcor, by varying di"erent error detectors inHospital and Rayyan.
GIDCLcorshows its robustness and stability in dealing with false positive (FP) cases, e.g., for dataset
Rayyan, detector Rotom detects 1,376 correct values to be error(w.r.t. 1,376 FN cases, here we
de!ne positive sample as clean values, and vice versa), however GIDCLcorkeeps most of the above
FN clean data unchanged, only correcting real errors, decreasing FN cases to 100. Similarly, by
introducingGIDCLdetand varying di"erent correction models, we also !nd the high performance of
GIDCLdetsigni!cantly boost the performance of baseline correction models, e.g.,Baran and JellyFish,
by adding error values that are wrongly detected to be clean by original detectors(w.r.t. FP). For
example, in dataset Rayyan, GIDCLdetadds 148 FP cases that are neglected by Raha detector, which
leads to non-trivial performance boosting of Baran from 0.28 to 0.57.
Varying sampling methods.We evaluate the e"ectiveness of GSL for GIDCL in Table 6, compared
with three sampling baselines, including SBert that replaces the graph structure learning in Section 4
with SentenceBert [88], Raha that adopts the idea of Raha [69] to select 𝑂 representative tuples
and Random that randomly select 𝑂 tuples. GSL consistently outperforms others, e.g., at most 14%
higher F1-scores. The above result veri!es the e"ectiveness of GSL to select representative tuples,
which can cover most of error attributes, as well as propagating labels within the largest 𝑈 clusters.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 236. Publication date: December 2024.



GIDCL: A Graph-Enhanced Interpretable Data Cleaning Framework with Large Language Models 236:21

Table 5. Error correction varying error detectors/correctors

Detector Hospital Rayyan
P R F P R F

GIDCL 0.97 0.96 0.97 0.80 0.93 0.86
GIDCLo”line 0.94 0.90 0.92 0.78 0.85 0.81

Raha +GIDCLcor 0.98 0.50 0.66 0.85 0.69 0.76
Rotom +GIDCLcor 0.90 0.80 0.85 0.74 0.67 0.71

GIDCLdet+ Baran 0.94 0.88 0.91 0.80 0.44 0.57
GIDCLdet+ JellyFish 0.88 0.75 0.81 0.78 0.91 0.84

Table 6. Error correction by varying sampling methods

Sample Method Hospital Rayyan
P R F P R F

GSL 0.94 0.90 0.92 0.78 0.85 0.81

SBert 0.92 0.87 0.90 0.75 0.74 0.75
Raha 0.80 0.79 0.79 0.70 0.71 0.71

Random 0.78 0.76 0.77 0.71 0.72 0.72

Table 7. Ratio 𝑔err in 𝑊train = Tlabel ↓ Tpseudo with sampling methods

Methods Hospital Rayyan
Cell 𝑔err Column 𝑔err Cell 𝑔err Column 𝑔err

GIDCLo”line 0.4337 14 0.4837 7

SBert 0.4232 8 0.4739 6
Raha 0.4002 9 0.4730 6

Random 0.3609 6 0.4697 5

Table 8. Error correction in Facilities and Inpatient

System Facilities Inpatient
P R F P R F

GIDCL 0.77 0.75 0.76 0.90 0.69 0.78

HoloClean 1.00 0.61 0.75 0.96 0.22 0.36
Raha + Baran 0.50 0.31 0.38 0.64 0.44 0.52

Garf 0.96 0.28 0.44 0.97 0.09 0.17
GIDCLdet+ T5 0.21 0.22 0.21 0.16 0.20 0.18

JellyFish 0.25 0.28 0.27 0.56 0.54 0.55

Class imbalance issues. In Table 7 (same setting with Table 6 above), we demonstrate the ratio 𝑔err
of erroneous cells in the training data used for training error correction models, based on di"erent
sampling methods with the same labelling budget. The ratio is de!ned as 𝑔err = #erroneous cells

#all cells . A
ratio 𝑔err close to 0.5 indicates a balanced training dataset.
Among all the datasets, GIDCL achieves the most reasonable ratios of erroneous cells and

attributes(w.r.t. columns), e.g., 43.37% and 48.37% error cells , covering 14 and 7 error attributes
in Hospital and Rayyan datasets respectively.
More real-life data. We involve two more real-life datasets Facilities and Inpatient in CMS [43]
in Table 8. GIDCL also achieves the best F1-score among all error correction baselines, e.g.,, its
F1-score is 0.86 in Inpatient, compared with 0.55, the best of others.
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Table 9. System runtime (seconds, detection time + correction time)

System Hospital Beer Flight Rayyan Tax IMDB

HoloClean 148 96 39 112 25778 35995
Garf 186 160 120 171 11013 15233
Baran 750 114 22 26 11936 13120

GIDCL (Training) 388 + 3437 866 + 2769 212 + 2052 399 + 4256 496 + 5959 1425 + 5664
GIDCL (Inference) 16 + 1209 10 + 1325 10 + 1025 10 + 1745 477 + 878 535 + 2341

Exp-2: E#ciency. Table 9 reports the running time of all baselines, including both error detection
and correction. In contrast to other LLM-based research [97], which often requires thousands of
GPU hours and extensive GPU memory for training, GIDCL could be trained within approximately
120 minutes for most datasets, e.g., 55 minutes for error correction in Flights in consumer-level
GPUs. Because GIDCL mainly adopts PLMs for error detection, it is fast for training and inference,
e.g., 496s and 477s in Tax, respectively.

One notable aspect of GIDCL is its utilization of function set F corr and generative modelMcorr
for joint data cleaning, resulting in a relatively small training and inference time that do not increase
linearly with dataset size. For example, when the data sizes of Hospital and Tax increase from 1,000
to 200,000, most baselines like HoloClean and Baran exhibit a linear increase in running time. In
contrast, GIDCL leverages the LLM-generated F for quick detection of dirty cells over a large
relational table T , and then applies error correction modelMcorr only on identi!ed dirty cells. Also,
the size of training data 𝑊 train remains approximately the same in all datasets, such that GIDCL is
insensitive with |T | in runtime.
Furthermore, the inference speed of LLMs is always a bottleneck [16, 23, 97] because of the

huge size of parameters, To solve it in the data cleaning task, GIDCL incorporates the vLLM
technique [59] that utilizes PagedAttention to group similar queries with a KV cache, signi!cantly
speeding up inference time. However, when dealing with small datasets, e.g.,Hospital, GIDCL is
still not comparable with traditional data cleaning methods. AlthoughGIDCL has various strategies
to accelerate the process, it still needs to !ne-tune LLM with huge number of parameters.

Exp-3: Ablation study. We show how error ratios for T impact the performance of GIDCL and
other baselines, as well as component analysis for GIDCL .
Component analysis In Table 10, we further analyze the impact of removing di"erent components
for GIDCL . The removal of the graph components results in the inability of the model to handle
VAD errors, also prevents correction model Mcorr from obtaining high-quality demonstrations
for ICL. Removing the creator component leads to a de!ciency in generating additional training
samples, causing both the detection model and correction model to su"er from severe over!tting
issues. Without the critic component, the function set F fails to extract complex semantic error
patterns and contextual inconsistencies. The lack of representation learning capacity induces a
drastic decline in F1. These results substantiate the indispensability of all three modules in the
GIDCL framework. However, in extreme condition, not all components are e"ective. e.g., in Beers,
the function set F det, F gen can detect and generate errors alone, and the critic component is not
e"ective; similarly, for dataset Flights, which is dominated by VAD errors, critic component cannot
generate useful Tpseudo regarding VAD errors.
Robustness analysis. To evaluate the robustness of GIDCL , we investigate its performance under
di"erent error rates in the Hospital dataset by adjusting the error rate from 10% to 50% as presented
in Table 11. As error rates increase, GIDCL generally demonstrates greater robustness, achieving
an F-measure of 0.85 in the Hospital dataset at a 50% error rate. Despite some randomness in
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Table 10. Ablation study

System Hospital Tax Rayyan Beers Flights
P R F P R F P R F P R F P R F

GIDCL 0.97 0.96 0.97 0.95 0.94 0.95 0.80 0.93 0.86 0.97 0.97 0.97 0.94 0.92 0.93
GIDCLo”line 0.94 0.90 0.92 0.89 0.89 0.89 0.78 0.85 0.81 0.95 0.95 0.95 0.84 0.81 0.82

GIDCL w/o Graph 0.92 0.91 0.91 0.88 0.68 0.77 0.78 0.91 0.84 0.68 0.58 0.63 0.65 0.53 0.58
GIDCL w/o Creator 0.83 0.73 0.78 0.74 0.43 0.55 0.50 0.49 0.49 0.34 0.38 0.36 0.73 0.65 0.69
GIDCL w/o Critic 0.98 0.83 0.90 0.86 0.61 0.72 0.61 0.13 0.22 0.97 0.97 0.97 0.93 0.92 0.93

Raha+Baran, an increased error ratio means more error types are included in the 20 labeled tuples,
allowing Raha+Baran to encounter a wider variety of cases. The features generated by Raha+Baran
are also robust against noise. Therefore, its performance remains stable. The performance of
JellyFish deteriorates sharply, highlighting that without the proposed creator-critic #ow for data
augmentation, LLM is prone to hallucination problems with limited training data.

Table 11. Error Correction Performance comparison by varying error rates

Dataset Error-Rate GIDCL Garf Raha + Baran GIDCL + T5 JellyFish

P R F P R F P R F P R F P R F

Hospital

10% 0.87 0.95 0.91 0.76 0.08 0.14 0.83 0.60 0.70 0.14 0.38 0.21 0.43 0.71 0.53
20% 0.88 0.93 0.90 0.98 0.05 0.10 0.80 0.63 0.71 0.07 0.38 0.12 0.41 0.66 0.51
30% 0.84 0.92 0.88 0.98 0.02 0.04 0.82 0.68 0.74 0.04 0.36 0.08 0.33 0.65 0.44
40% 0.82 0.93 0.87 0.97 0.01 0.03 0.83 0.63 0.72 0.03 0.36 0.05 0.28 0.67 0.39
50% 0.80 0.93 0.85 0.95 0.01 0.02 0.74 0.57 0.65 0.03 0.36 0.05 0.23 0.66 0.35

(a) Hospital Dataset (b) Rayyan Dataset

Fig. 6. Performance w.r.t. the number of clusters 𝑈

Varying di"erent 𝑈 . We vary the number of clusters 𝑈 to evaluate error detection and correction of
GIDCL in Hospital and Rayyan. The trend of F1-score increases !rst and then declines later when
𝑈 increases. This shows that a medium value of 𝑈 would lead to the best performance, e.g., 𝑈 = 20
and 10 for Hospital and Rayyan, respectively. A small 𝑈 leads to clusters with large sizes such that
non-similar tuples are involved in the same clusters so that representative tuples are inclined to be
less representative; a large 𝑈 leads to skewed distribution in clusters, s.t., most clusters contain few
tuples, e.g., fewer than 10, which deteriorate the quality of RAG of LLM in GIDCLcor.

8 Related Work
We categorize the data cleaning algorithms as follows.

Error detection. As the !rst step in the data cleaning pipeline, there are a host of error detection
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algorithms that could be classi!ed into two categories. (1) Rule-based methods. Rule-based methods
usually adopt di"erent types of rules to !nd violations in data using various detection methods,
e.g.,FDs [5, 11], DCs [19, 44, 47, 89], CFDs [13, 32, 33], PFDs [83], REEs [40, 42], user-de!ned
rules [31] and manually-de!ned parameters [8, 82]. Considering the di$culty of handcrafting
data quality rules, several rule discovery algorithms [12, 18, 34, 36, 37, 67, 78] are proposed to
!nd hidden patterns in data. (2) Data-driven methods. There are many data-driven methods that
detect errors based on statistical and ML models in the supervised and unsupervised learning
manners. Supervised methods [50, 70, 72, 76, 80, 108] require users to provide a few labeled data
and then design machine learning models to identify errors in data. Statistical hypothesis [102],
co-occurrence dependency [54], ActiveClean [58], meta-data [100] and rule generation [79] aim
to learn abnormal data in an unsupervised learning way. Di"erent from previous works, GIDCL
targets at generating detection rules and self-labeled data in an automated and su$cient manner,
a data-driven method without prior knowledge, which can break the limitation of domains and
languages.

Error correction. After identifying erroneous data, data cleaning needs the error correction part
to repair. We mainly classify the error correction approaches as follows. (1) Rule-based methods.
Similar with error detection, FDs, CFDs, denial constraints, PFDs and REEs are mainly used to
correct errors using various repairing mechanism, e.g., heuristic !xes [6, 9, 10, 21, 22, 28, 45, 46, 48,
49, 87, 93, 101, 104], certain !xes [38–41, 90]. (2) ML models. ML-based methods adopt ML models
with handcrafted features for data cleaning. SCARE [103] designs methods that combine ML
models and likehood approach for data repair. HoloClean [89] uses pre-de!ned denial constraints
and MDs as features and designs a factor graph for error correction. There are also generative
models [24, 30, 53, 60, 73, 91] that adopt probabilistic inference to iteratively clean data in the
generative mode given some injected prior knowledge. Many ML models focus on imputing
missing values, e.g., autoencoder [79] and GAIN [105]. Data cleaning are also employed to improve
downstream ML models, e.g., [27, 62, 66]. (3) Hybrid methods. which unify logical rules and machine
learning models for data cleaning,e.g.,Baran [68] adopts rule-based features to !nd inconsistencies
in data and train traditional ML models to !nd suitable repairs for dirty cells. There is also a host
of work [51, 56, 57, 63, 95] to apply DC for improving downstream ML performance. (4) external
data based methods. These methods refer to various external data to help data repair, e.g., master
data [39], knowledge bases [20] and web table [3]. Di"erent from previous works, GIDCL adopt
LLMs-dominated model to jointly generate correction value and data cleaning rules, the whole
process is completely data-driven without human and external information.

9 Conclusion
Data cleaning plays a pivotal role in numerous applications. GIDCL introduced an end-to-end data
cleaning framework that consists of a user labeling mechanism based on graph neural network, a
creator-critic work#ow for error detection and a LLM-based error correction. Even with a limited
number of label data, GIDCLmaintains high accuracy and provides a degree of interpretability. The
experimental results show that GIDCL outperforms the existing data cleaning approaches by at
least 10% F-measure on average, verifying the proposed framework is e"ective in various scenarios.
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