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Abstract. Relational tables on the web hold a vast amount of knowl-
edge, and it is critical for machine learning models to capture the seman-
tics of these tables such that the models can achieve good performance
on table interpretation tasks, such as entity linking, column type anno-
tation and relation extraction. However, it is very challenging for ML
models to process a large amount of tables and/or retrieve inter-table
context information from the tables. Instead, existing works usually rely
on heavily engineered features, user-defined rules or pre-training corpus.
In this work, we propose a unified Retrieval-Augmented Framework for
tabular interpretation with Large language model (RAFL), a novel 2-step
framework for addressing the table interpretation task. RAFL first adopts
a graph-enhanced model to obtain the inter-table context information by
retrieving schema-similar and topic-relevant tables from a large range of
corpus; RAFL then conducts tabular interpretation learning by combin-
ing a light-weighted pre-ranking model with a re-ranking-based large
language model. We verify the effectiveness of RAFL through extensive
evaluations on 3 tabular interpretation tasks (including entity linking,
column type annotation and relation extraction), where RAFL substan-
tially outperforms existing methods on all tasks.

1 Introduction
Table interpretation over relational web tables has become a hot research topic
over past decade, since relational tables spread around the web and store a
large amount of knowledge. Table interpretation aims to uncover the semantic
attributes in relational tables [1], transform the tables into machine-friendly
knowledge [39], and map the data in tables to nodes in knowledge graph(KG) for
additional information [34]. Table interpretation plays a crucial role in various
data quality applications, e.g., schema matching [25], data cleaning [46], data
integration [35] and KG construction [27].

However, the study of table interpretation is still in its infancy; existing
approaches usually achieve moderate performance on table interpretation tasks.
Limitations of existing works. There are 3 main drawbacks of existing works
for addressing the tasks of table interpretation.
Inadequate ability in handling large tables. It is common that some tables hold
hundreds of columns [48]. However, pre-trained language models (PLMs) adopted
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in recent works can only accept an input with a limited length and cannot directly
handle large tables (e.g., TABBIE [15] and DUDUO [28]).
Limited capability of retrieving and incorporating inter-table context. Relational
web tables consist of various schema-free tables from different sources. However,
existing works (e.g., TURL [5] and TCN [34]) can only handle relational ta-
bles with known schema and topic, and cannot align and retrieve unseen related
tables from a large corpus.
PLMs are hard to read tables reliably. PLMs are pre-trained on natural language
texts in either one-directional manner or structure-unaware manner (e.g., Bert [6]
and RoBERTA [23]). However, relational tables are naturally two-directional
(i.e., row and column) and structure-aware, such that language models cannot
be directly applied on relational tables.

Luckily, large language model (LLM) provides a powerful solution for address-
ing above limitations, since (1) LLM can process a longer query than traditional
PLMs (maximum to 32k tokens) and can read a whole table with additional
inter-table contexts; and (2) LLM is pre-trained on a variety of corpus and thus
capable of reading tables reliably. However, it is non-trivial to incorporate LLM
with tabular interpretation with following challenges.
Challenges of applying LLM in table interpretation.
More related tables. Retrieval-augmented generalization (RAG) [43] is the widely-
used paradigm for retrieving relative context and feeding the context into quering
LLM for better performance. However, RAG is hard to effectively retrieve related
tables for LLM, since it only retrieves related tables based on semantic similarity,
while ignoring the structure and topic similarity between tables.
Alleviation of the hallucination problem. When as a ranking model, without an
effective pre-ranking strategy, LLM may suffer from hallucination problem [42]
and output factual errors or incorrect predictions, since LLM is a decoder-only
generative model and is hard to constrain its output range.

To address above challenges, in this paper, we propose a unified Retrieval-
Augmented Framework for tabular interpretation with Large language model
(RAFL). RAFL uses a graph-enhanced retrieval system to effectively retrieve re-
lated tables from a variety of schema-free web tables, and considers both struc-
tural and semantic similarity. Moreover, RAFL adopts a two-step ranking model,
including a light-weighted pre-ranking model and a LLM-based re-ranking model,
which enables a reliably read for large tables and alleviates hallucination issue
for LLM. Furthermore, RAFL combines generalized instruction-tuning with task-
specific fine-tuning for training LLM, with a small annotation budget.
Contributions. In this paper, we make the following major contributions.
◦ An unified framework for tabular interpretation learning. We in-

troduce RAFL, an unified end-to-end tabular interpretation framework, that
handles information retrieval, self-supervised annotation and ranking proce-
dure with state-of-the-art LLM-backboned model in a reliable manner.

◦ A graph-enhanced retrieval system. To automatically retrieve related
tables from a wide variety of web table corpus, we propose a graph-enhanced
retrieval model that could automatically retrieve related tables and provide
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self-supervised annotations, by considering both semantic and structural
similarity between web tables.

◦ A two-stage ranking system with LLM. We propose a two-stage rank-
ing model equipped with LLM, to rank candidate annotations. This model
conducts task-specific fine-tuning with LLM, by effectively combining the
demonstrations returned by retrieval system with the pre-ranking candidates
returned by light-weighted pre-ranking models.

◦ Comprehensive evaluation. We conduct extensive experiments to evalu-
ate the performance of RAFL on three main table interpretation tasks. RAFL
outperforms a variety of state-of-the-art tabular interpretation baselines with
aspect of effectiveness and robustness. In particular, RAFL consistently out-
performs all non-LLM baselines with only 25% of the training data.
In addition, Section 2 reviews related works, Section 3 presents the prelim-

inary, models and a formal problem definition, Section 4 details the proposed
RAFL, Section 5 reports experimental results, and Section 6 concludes this paper.

2 Related Work
2.1 Table Interpretation
Table interpretation aims to uncover the semantics of data contained in a table,
with the aim of making tabular data intelligently processable by machines [48].
This task is usually accomplished with help of existing knowledge bases. In
turn, the extracted knowledge can be used for KG construction and population.
There are three main tasks of table interpretation: entity linking, column type
annotation and relation extraction [1, 48].

Entity linking is the task of detecting and disambiguating specific entities
mentioned in a table, and is a fundamental component to many table-related
tasks. Column type annotation and relation extraction both work with table
columns. The former aims to annotate columns with pre-defined KG types, while
the later intends to use KG relations to interpret relations between column pairs.
Prior work usually incorporate such tasks with referencing KG and entity link-
ing [49]. After linking cells with entities in KG, the types and relations in KG
can be applied to annotate columns. In recent works, column annotation with-
out the requirement of entity linking has been explored [30, 5], which modify
text classification models to fit for relational tables. Relation extraction on web
tables has also been studied for KG augmentation [44].
2.2 Language Models for Table Tasks
Encode-style language model for table tasks. One class of PLMs, contain-
ing BERT [6], RoBERTa [23], is pre-trained on large amount of table corpus,
then employs task-specific fine-tuning on downstream tasks. A host of work,e.g.,
TURL [5], TaBERT [39], DUDUO [28], train table-models based on encoder-
stype BERT-like models, and are shown to perform well on various table inter-
pretation tasks. However such encoder-stype table-models are lack of ability for
generalizing to unseen domain or unseen tasks. Our model RAFL applies a uni-
form framework, and the retrieval-augmented system can incorporate few-shot
demonstration for adopting to unseen tables and tasks.
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Page Title 
& Topic Entity 

Section Title 

Table Caption 

Table Header 

Relation Extraction:
number of points/goals/set scored(P1351)

Column Type Annotation:
City in Switzerland

Entity Mention
:Suisse

Entity Linking:
=Swiss national football team(Q165141)

Table
Metadata

Table
Cell

Table
Interpretation

Task

Task-Specific
Instruction

for

Model 
Output

Relation Extraction(RE)
Instruction : Please check col-3/col-4, and choose

which type can best conclude the relation in KG. 

Options :{number of goal/number of plays/count}

Demonstration :

Champion Euro 2012: col:{Team/P} relation:{number of goal}

Champion Euro 2002: cell:{City/P} relation:{number of plays}

Table : Champion Euro 2008 {col-3:Team,col-4:P}

Model Output : KG Relation:{number of goals}

Entity Linking(EL)
Instruction : Please check the given cell, and choose

which entity in KG can best match the cell. 

Options :{Suisse:city,Suisse:name,Suisse:football
team}

Demonstration :

Champion Euro 2012: cell:{Autriche} entity:{Autriche:team}

Champion Euro 2002: cell:{Geneve} entity:{Geneve:city}

Table : Champion Euro 2008 {col:team,cell:suisse}

Model Output : Entity:{Suisse:Swiss national football team}

Column Type Annotation(CTA)
Instruction : Please check col-1, and choose

which type can best conclude the column type. 

Options :{city,state,county}

Demonstration :

Champion Euro 2012: col-1:{Autriche|Croatie} type:City

Champion Euro 2002: col-3:{Geneve|Bale} type:Team

Table : Champion Euro 08 col-1:{Bale|Geneve}

Model Output : Column Type: {type:City in
Switzerland}

Fig. 1: An example of a relational table from Wikipedia. The above part contains the
table metadata Tm and the table cells T.E. The middle part illustrates examples of
three table interpretation tasks κ, i.e.,CTA: Decide the column type for column CITY;
EL: Choose the KG entity linked with cell Suisse; RE: Decide the KG relation for column
pair (Team-P).The latter part presents how we organize the task-specific instruction
for LLM, to provide the final output oκ for each task. We highlight the key components
for LLM instruction, and they are vital to guide LLM to output proper answer.

Decoder-style language model for table tasks. With the success of decoder-
style language models (e.g., GPT-3 [3] and LLaMA [31]) on few-shot or zero-shot
learning tasks, pioneering researches in database field apply prompt optimization
for table-tasks [45, 47, 21, 41, 29]; however, most work only fits for online LLM,
and need careful human annotation and optimization. RAFL fine-tunes local
LLM and can automatically retrieve and annotate examples from a large corpus,
providing an affordable tool for most researchers without huge computing power.

2.3 Large Language Model

Recently, researchers find that scaling PLM (e.g., model size) often leads to an
improved model capacity for models on various downstream tasks, following
scaling laws [17] (e.g., the 175B-parameter GPT-3 [3]). The researchers use LLM
to define these large-size PLMs. Compared with PLMs, LLMs show emergent
abilities [36], in-context learning [7] and instruction following [26]. These abilities
guarantee LLMs to learn well on relational tables on different tasks.

3 Preliminary, Models and Problem Definition

In this section, we first introduce the preliminary and adopted models; after
that, we formally define the problem of table interpretation.
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3.1 Preliminary

Graph Neural Network (GNN). Consider a graph G = (V,E, L), where V , E
and L are the sets of vertices, edges and labels in G, respectively. GNN generates
embedding for each vertex v ∈ V by utilizing its attributes and recursively
aggregating messages from 1-hop neighbors of v [10].
Pre-trained Language Model (PLM). Traditional PLMs (e.g.,Bert [6], GPT-
2[24]) refer to the models with uniform encoder-decoder structures with 12 to
24 Transformer layers, and they have shown compelling performance on a wide
range of NLP tasks [33]. PLMs are usually pre-trained on a large text corpora in
the self-supervised learning manner, and then applied in multiple downstream
tasks (e.g., classification and regression tasks). When adopting PLMs for a spe-
cific task, one should add a task-specific layer after PLMs and fine-tune the
parameters for a better performance.
Large Language Model. Large language models (LLMs), e.g.,GPT-3 [3] and
LLaMa [31], usually refer to the decoder-only models with more than 6 billions
of parameters; and they consist of 32 to 40 transformer layers [11]. LLMs are
pre-trained on enormous corpora, and have been shown incredible performance
on various generative tasks in the few-shot or zero-shot scenarios.

LLMs are well known for the emergent abilities [36] (i.e., the sudden appear-
ance of unseen behavior), and achieve a superior performance on unseen tasks,
with no or few labeled data as demonstration. In other words, LLMs are capable
of generative conversations and reasonable thinking.

However, LLMs may suffer from hallucination problem when the queried data
is beyond the knowledge or ability scope of LLMs, and thus generate factual errors
or unrelated answers [42]. To alleviate this problem, researchers usually adopt the
following strategies to constrain the response of LLMs: (1) Instruction: a combo
of prompt and options (i.e., candidate outputs/answers) for guiding LLMs to
accomplish a given task; (2) In-Context Learning(ICL): a method of prompt
engineering that provides LLMs with demonstrations in the instruction [7]; and
(3) Retrieval Augmented Generation(RAG): a method to improve the quality of
LLM responses by feeding the model with retrieved relevant contextual data,
without updating the parameters of LLM [20].

3.2 Models
Definition 3.1. (Relational Web Tables): A relational web table T ∈ T
contains following elements: (1) Table Caption T.C: it includes the page title
and section title (if provided) of the webpage of T ; (2) Table Headers T.H: it
refers to T ’ schema; (3) Topic entity T.et: it describes the topic of T ; and (4)
Table cells T.E: each cell e ∈ E is associated with an entity pair (em, ee), where
em is the entity mention of e and ee is the linked entity ee of em in a KG G. 2

Note that, for each cell e ∈ T.E, ee may not always exist, when e does not
contain hyperlink or the hyperlink refer to an invalid entity in G. We simplify
the notation of each element in Definition 3.1 by discarding the prefix T (e.g.,
T.C → C), when there is no ambiguity. Please refer to the above part in Figure 1
for the toy example of a relational web table from Wikipedia.
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Definition 3.2. (Annotation): For a relational web table T ∈ T , we say T
is (1) annotated or labeled, if its task-related annotation oκ ( i.e., ee ∈ Ce for
EL, l ∈ L for CTA and r ∈ R for RE) is partially or all provided by users;
(2) unannotated or unlabeled, if none of Oκ is provided by users; or (3) self-
annotated, if partial or all of Oκ is predicted by a model trained on Ttrain. 2

For a table T in T , it may be associated with 3 states: annotated, unanno-
tated and self-annotated. We denote as Ttrain (⊂ T ) the set of annotated tables.
Note that L are pre-defined semantic types set, R are pre-defined relations from
an existing KG G, and Ce is the candidate entities set for cell e (extracted from
G). Please check the middle part in Figure 1 for examples of L, R and Ce.

Definition 3.3. (Table Metadata): Given a relational web table T defined
in Definition 3.1, its metadata Tm = (T.C, T.H, et) contains the table caption
T.C, headers T.H and the topic entity et. 2

A table metadata refers to a relational web table without table cells.

Definition 3.4. (Related Tables): Given a relational web table T , its re-
lated tables Trelated contains a set of tables Tj ∈ T , where the similarity score
Sim(Tj , T ) between T and Tj is no less than a threshold γ. 2

3.3 Problem Definition
Table Interpretation. We formally define the problem of table interpretation
via large language models.

Definition 3.5. (Table Interpretation): Given a relational web table T ∈
T , a large language model MG, a knowledge graph G, a specific task κ, the
κ-related information Tκ of T , a κ-related instruction Insκ, a set Dκ of κ-
related demonstrations ( i.e., related tables Trelated of T ) and a domain Oκ of κ-
related answers, a table interpretation task adopts MG to uncover the semantics
contained in T and then selects an element oκ from Oκ as the answer. 2

As shown in Definition 3.5, one can define an instance of a table interpretation
task as a quadruple t = (Insκ, Dκ, Tκ, Oκ). Following [1, 48], we focus on three
main table interpretation tasks in this work: entity linking (EL), column type
annotation (CTA) and relation extraction (RE), i.e., κ = {EL,CTA,RE}.

Please refer to the middle part and the caption in Figure 1 for the toy example
of each specific task.

In the sequel, we detail each of the table interpretation tasks.
Entity Linking. Given a relational web table T and a knowledge graph G, entity
linking (EL) is to link the entity mention em of each cell c ∈ E in T with its
corresponding entity eG in G, where em and eG refer to a same entity.

Specifically, given an entity mention em of a cell and a set Ce of potential
linked entities ee in G, the EL task can be formulated as: t = (InsEL, DEL, (em, Tm),
Ce), where InsEL and DEL are the instructions and demonstrations of the EL task
respectively, T EL := (em, Tm) includes the entity mention em of each cell e ∈ E
in T and the table metadata Tm of T as context, and Oκ := Ce limits the domain
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by 
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by 
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by 
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by 
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Assets

birthplace name
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Warsaw Marie Curie
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Output Annotation 

By 
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Ranking System 
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:Column Type From 

:Relation from 
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Fig. 2: Framework of the proposed method RAFL, CTA is for column type annotation,
RE is for relation extraction, and EL is for entity linking

of linked entities of em in G. Please refer to the bottom middle in Figure 1 and
the upper right corner in Figure 2 for a toy example.
Column Type Annotation. Given a table T and a set of pre-defined semantic
types L, column type annotation (CTA) refers to the task of annotating a column
h ∈ T.H with a semantic type l ∈ L, such that all entities in column h hold the
type l. Note that a column may have multiple semantic types.

Specifically, the CTA task can be formulated as: t = (InsCTA, DCTA, (h, T ),L),
where InsCTA and DCTA are the instructions and demonstrations of the CTA task
respectively, TCTA := (h, T ) includes the header h ∈ T.H and table T itself as
context, and OCTA := L limits the domain of candidate types for header h. Please
refer to the bottom left part in Figure 1 for a toy example.
Relation Extraction. Relation extraction is the task of mapping column pairs in
table T to relations in knowledge graph G.

Specifically, the RE task can be formulated as: t = (InsRE, DRE, ((hi, hj), T ),R),
where InsRE and DRE are the instructions and demonstrations of the RE task
respectively, TRE := ((hi, hj), T ) contains T itself and a header pair (hi, hj) in T
as context, and ORE := R limits the domain of candidate relations for the header
pair (hi, hj). Please check the bottom right part of Fig. 1 for a toy example.

We provide a illustration of the above definitions and annotations in Fig. 1.
Challenges. Given a table interpretation task t = (Insκ, Dκ, Tκ, Oκ), an effec-
tive solution is usually related to three aspects: (1) a set of informative instruc-
tions in Insκ, (2) a set of instructive demonstrations in Dκ, and (3) a small set
of candidate answers in Oκ. In Section 4, we propose an approach to address the
table interpretation task by refining above three items.

4 Methodology
4.1 Solution Overview

In order to address the table interpretation problem in Definition 3.5, we propose
a unified Retrieval-Augmented Framework with Large language model (RAFL),
which applies to different table interpretation tasks. In particular, given a set of
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relational web table T , an unlabeled table T ∈ T and a specific task κ, RAFL
solves the table interpretation tasks in two phases: retrieve and ranking, where the
retrieve phase aims to improve the quality of instructions Insκ, demonstrations
Dκ and candidate answer set Oκ by retrieving related table set Trelated from T ,
and the ranking phase adopts LLM to obtain the best answer from Oκ.

Figure 2 illustrates a toy example of applying RAFL framework for addressing
three typical table interpretation tasks: entity linking (EL), column type anno-
tation (CTA) and relation extraction (RE). In the sequel, we present the detail
of the RAFL framework.

4.2 Retrieve Phase

Given an unlabeled table T ∈ T , RAFL first selects the most related tables
Trelated from T for T , and then adds self-annotations for tables in Trelated. In
order to achieve this, RAFL first trains two types of models: (1) a set of bi-level
(column-level and cell-level) ranking models for embedding T in an unified em-
bedding space and self-annotating the output Oκ, and (2) a graph structure
learning model GSL for learning the unified representations of tables in T in an
unsupervised manner. RAFL then adopts an ensemble retrieval model (by inte-
grating above two models) for (1) pre-ranking the task result such that only top-
k candidate answers with hightest probability are provided, (2) self-annotating
tables in T , and (3) obtaining the related table Trelated of T from T .
Training. We detail the training process of the set of bi-level ranking models
and the graph structure learning model mentioned above.
Bi-level ranking model M. Given a training set Ttrain of annotated tables, we
aim to design and fine-tune a embedding model M, which can embed any table
T ∈ T and task-specific information (i.e., column type l ∈ L, KG relation r ∈ R
and KG entities e in knowledge graph G) in an unified embedding space.

We construct the training data from Ttrain. Given an annotated table Tlabel ∈
Ttrain, we retrieve and serialize multiple (query,pos) training pairs from Tlabel

in both column-level and cell-level, for training ranking model M. By using
contrastive learning, for a given query, we consider any elements other than
pos to be negative training pairs. The detailed training pair construction is
presented in Example 1. The serialized training data is denoted as Strain =
(SCTA

train, S
RE
train, S

EL
train) for different tasks respectively.

Example 1. Consider Tlabel in Fig. 1. We denote the page title and caption ti-
tle as metadata Tm

label. The positive pair for training should be serialized as:
(1) CTA Columns-level: query: (Tm

label,Header:City), pos: City; (2) CTA Cell-level:
query: (Tm

label,Header:Team/P), pos: number of points; (3) RE Columns-level: query:
(Tm

label,Header:City, Cell:Bale), pos: City; (4) RE Cell-level: query: (Tm
label,Header:Team/P,

Cell:Turquie/0), pos: number of points; and (5) EL Cell-level: query: (Tm
label,Header:Team,

Cell:Suisse), pos: Swiss national football team
And all the candidates not listed in pos are labelled to be negative elements.

After having the training data, we tokenize the data and pass them to a
PLM model, then fine-tuning the model with the contrastive learning loss[18]:
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min .
∑

(q,p) − log
exp(⟨embq,embp⟩/θ)∑

p′∈P exp(⟨embq,embp′⟩/θ) , where q denotes query, p denotes

pos, emb means embedding, P is the union of all positive/negative elements,
and θ is the temperature parameter.
Self-annotation. When training is finished, we obtain the task-specific model set:
M = (MCTA,MRE,MEL) trained from SCTA

train, S
RE
train,SEL

train respectively.
For MCTA(T ), when given an unlabeled table T ∈ T , MCTA will serialize T

at both the column-level and cell-level, creating SCTA
T . It will then encode and

calculate the similarity score between the embedding of SCTA
T and L, and ranks

all elements in L based on the similarity. Finally, it outputs the top-1 most
similar element l′ as the column type annotation for T . This pipeline is also
applicable to MEL and MRE. Besides, we use the model ensemble method[38],
to merge the same-backbone sub-models in M into an ensembled model Mens,
avoiding domain shift problem. M(T ) = (l′, r′, e′) indicates that M will provide
the self-annotation (l′, r′, e′) for T .
Graph structure learning model GSL. We develop a graph structure learning ap-
proach to learn the unified representations of tables in T in an unsupervised
manner, and refine the headers H in T , to a limited pre-defined semantic type
set L and knowledge graph relation set R with the fine-tuned ranking model M.
(1) Graph Construction. Given a table T with annotations (l′, r′, e′), we trans-
form T into a directed subgraph G′ = (V,E,L). G′ contains cell-level edges φcell

and table-level edges φtable, where φcell is the edge between cells in T , and φtable

is the edge between the center node eT representing table T and all cells em ∈ T .
For φcell, it contains triple (emi,j , r

′, emi,j′), where r′ is the relation edge anno-
tated by MRE for header pair (hj , hj′), and emi,j , e

m
i,j′ are nodes representing cells

in i-th row, j, j′-th column from table T ; For φtable, it contains triple (eT , l′, emi,j),
where eT is the center node representing table T , l′ is the column type annotated
by MCTA for column hj , and emi,j is the node representing one cell in i-th row,
j-th column from table T .

By mapping a set of headers h ∈ H into a limited value range L ∪ R as
different edge types, the schema-free T is pruned to a dense directed graph G.

Besides, we also add the topic-level edge φtopic = (eT , r+, et), where et is the
topic entity representing the webpage which T belongs to, r+ is a special-defined
relation meaning belong to, and eT is the center node representing table T . By
clustering the similar topic entity et into a set {et}, we can cluster the tables
with the same semantic topic into one cluster.

After constructing the subgraph G′ for each T ∈ T , we merge all subgraph
G′ for T to a unified graph G for T .
Example 2. For table T in Fig. 1, we provide examples for the different edge
types constructing G′, where et is the topic entity node representing page Cham-
pion of Europe Football 2008, eT is the center node representing T , r′ =number of
points, l′ =City.
◦ φcell: (em2,6:Turquie, r′:number of goals, em2,5:0)
◦ φtable: (eT :Champion of Europe Football 2008: Group D, l′:City in Switzerland,
e1,2:Bale)

◦ φtopic: (eT :Group D, r+:belong to, et:Champion of Europe Football 2008)
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(2) Graph Representation Learning. After constructing G, initially we adopt a
pre-trained representation learning model Mens, which is ensembled from all
sub-models in M, to generate embedding for all vertices and edges in G, such
that the semantic similarity trained by Ttrain are more likely to be maintained.

Next, we apply CompGCN[32], a GNN-style method, to learn embedded vec-
tors for all vertices in V . We denote G(e) as the graph embedding for entity
e ∈ G. Please check the left part of Figure 2, for the flowchart of training stage
of our retrieval model RAFLret.
Inference. Given the well trained bi-level ranking model M and the graph
structure learning model GSL, we develop an ensemble retrieval model RAFLret by
integrating M and GSL, for (a) pre-ranking the task-specific candidate answers,
(b) obtaining the related table Trelated of T from T and (c) self-annotating
tables in Trelated. Please refer to the middle part of Figure 2 for the flowchart of
inference stage of the retrieval model RAFLret.
Pre-ranking. Although the pre-ranking model M is well-trained on training set
Ttrain, it still suffers from the domain shift problem, and cannot self-annotate
well on the unseen unlabelled table T . However, when loose the ranking result
range to top-k, the right annotation may be within the candidate top-k set with
high probability.

So for the unseen unlabelled table T , we use M to self-annotate the top-k
candidate set, denoted as C = (L ⊆ L,R ⊆ R,E ⊆ Ce) for CTA, RE and EL
tasks respectively, and |L| = |R| = |E| = k.
Retrieving related tables. With the pre-ranking result (L,R,E), we come back
to the directed graph G and sample the related tables from G. Note that a table
T ′ ∈ T is equivalent to the center node eT

′ ∈ G.
Firstly, we filter G to its subgraph Grelated, such that only edges in L∪R are

allowed in Grelated, and retrieve the set of tables Tcommon, which center node
is contained in Grelated. We obtain the top-τ most-similar tables in Tcommon

as Trelated, by computing and ranking the graph embedding similarity provided
by G add the semantic embedding similarity provided by Mens. Since all tables
T ′ ∈ Trelated are also self-annotated by M in graph construction procedure,
Trelated is naturally suitable as the demonstration Dκ for re-ranking LLM model.

Example 3. In Fig. 2, the middle part Trelated shows two related tables for target
table T . The selection process considers both semantic and structure similarity.
In general, we denote RAFLret as the combination of (G,M) as a whole graph-
enhanced retrieval system, and the similarity score Sim in Definition 3.4 is pro-
vided by RAFLret. Different from existing retrieval system [43] that only consider
the table-level semantic similarity, our retrieval model RAFLret considers both
semantic and structure similarity in cell-level and column-level, and tends to
choose tables that share common column types, relations, entities and struc-
tures with the target table T .

4.3 Ranking Phase

Functionally speaking, RAFL applies a two-step ranking strategy for annotating
the target table T . In the pre-ranking step, we adopt the trained ranking model
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M to provide a candidate set C of top-k options; the detail of the pre-ranking
is discussed in the retrieval phase, and we do not further discuss it. Following
the In-context Learning(ICL) paradigm, in the re-ranking step, RAFL takes the
candidate set C and the self-annotated relative table set Trelated as instruction,
then leverages LLM model to re-rank the options in C and get the final annotation
for T . We provide more details of the re-ranking with LLM.
Re-ranking with LLM. As the pre-ranking stage is well illustrated in Section
4.2, we directly come the final re-ranking stage with LLM, and we denote the
fine-tuned LLM as MG.

Inspired by the success of learn-to-rank paradigm applied in recommendation
system[9], we combine M and LLM-based MG to build up our pre-ranking and
re-ranking system RAFLrank. The pre-ranking model M can successfully shorten
the candidate set size from |L| to k with considerable efficiency, but cannot
perform well on the final annotation decision, w.r.t the Precision@1; LLM model
is suitable for decision-making from limited candidates, but requires high-quality
instruction and demonstration for T , and the training cost for LLM is large.

Back to Definition 3.5, given the training data Tlabel ∈ Ttrain and task κ, the
input for training MG is the quadruple (Insκ, Dκ, Tκ, Oκ), where Insκ means
instruction, containing task-specific prompt and the candidate set C = (L,R,E)
provided by M(Tlabel); Dκ is the subset that randomly sampled from Trelated,
to avoid exceeding the maximum input token limit for LLM; Tκ is Tlabel without
annotation; Oκ = C. And the label for training MG is oκ, representing the final
annotation decided by LLM, and the value for oκ should be selected from the
candidate set Oκ.

After training MG, for any unlabeled table T ∈ T , the MG can provide
its final annotation oκ for task κ, where the input quadruple is retrieved and
annotated automatically by the retrieval model RAFLret. Please check the right
part of Fig. 2, for the flowchart our ranking system RAFLrank.

Example 4. For the lower part in Fig. 1, we provide the training pair for fine-
tuning LLM. Options Oκ are task-specific candidate set C, demonstration Dκ is
sampled from Trelated with self-annotation, and output oκ is selected within C.

5 Experiment
We conducted experiments on 3 widely studied tasks of table interpretation
learning: column type annotation, relation extraction and entity linking. We
empirically evaluated: (1) the overall performance of the proposed framework
RAFL against with the state-of-the-art baselines for each task; (2) the few-shot
learning capability of RAFL; (3) the effectiveness of our retrieval-model RAFLret;
(4) the ablation study of our pre-ranking model M and our re-ranking LLM-
backboned model MG; and (5) the efficiency of the proposed RAFL.

5.1 Setup

Dataset We evaluated our system on 4 well-known benchmark datasets [30,
5], as shown in Table 1. For CTA task, we selected the Semtab2019 dataset[4]
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Table 1: Statictics of all datasets, for CTA and RE tasks, types column are the size of
pre-defined type set |L|, |R|; for EL task, avg candidates column are the average entity
candidates number |Ce| for each mentioned cell em
Task Type Datasets types(avg candidates) #tables #cols avg rows avg cols train/test

CTA
Semtab2019[4] 275 3045 7603 69.0 2.5 9:1
WebTables[13] 78 32262 74141 20 2.3 4:1

EL WikiGS-EL[5] 9.1 200018 1080994 13 5.4 25:1
RE WikiGS-RE[5] 121 54410 65026 13 1.2 30:1

and the Webtables dataset from the VizNet corpus[13]. These datasets contained
vertical relational web tables with valid semantic labels of different levels of gran-
ularity, and was widely used in recent works [28, 40, 30]. For RE task, we selected
the WikiGS-RE dataset from TURL[5, 8]. The pre-defined relation set R were
selected from Freebase[2], and annotated the ground truth by majority voting.
For EL task, we selected the WikiGS-EL dataset from TURL[5] for WikiGS[8].

Experiment Settings We selected bge-large-en[37] as the backbone for the pre-
ranking models M, and Vicuna-13B[22] as the backbone of re-ranking model
LLM by default. The default parameter k for pre-ranking was set to 3, and
the demonstration example number budget τ was set to 4. We conducted our
experiment on a single machine powered by 256GB RAM and 32 processors
with Intel(R) Xeon(R) Gold 5320 CPU @2.20GHz and 4 V100 GPUs. Each
experiment was run 3 times and the average is reported here.
Baselines. For CTA tasks, we compared RAFL to the following baselines. (1)
Sherlock [14], which combines character-level and global statistical features with
semantic multi-context analysis for vector representations of table columns. (2)
TaBERT [39], a method that processes queries and table contents together, se-
lecting three key rows for snapshots and employing BERT for column classi-
fication representations. (3) TABBIE [15], using a dual-transformer structure
to encode both table columns and rows, and generating embedding for target
column semantic type annotation. (4) DODUO [28], which encodes all columns
in a table with a transformer structure to account for inter-table context. (5)
RECA [30], an approach that aligns tables based on schema-similarity and topic
relevance using a new named entity schema for inter-table context integration.

For EL and RE tasks, we compared RAFL to the state-of-the-art baseline
TURL[5], which is an encoder-based BERT-like model pre-trained on 570k ta-
bles, and fine-tuned on task-specific data. Since we did not use the pre-training
corpus, we compare TURL without its pre-training checkpoint, and fine-tuned on
the same task-specific data WikiGS-RE and WikiGS-EL respectively. Moreover,
we compared RAFL to TableLLaMA[41] (resp. GPT-4) on CTA and RE (resp. RE
and EL) tasks as LLM baselines, where TableLLaMA is with 7B parameters and
GPT-4 is provided with 500 examples from test set for each task due to limited
budget (this is why we do not mention the training size of GPT-4).
Evaluation Measures. We used the same evaluation metrics as the baselines
above. (1) For CTA and RE task, following [40], we selected two types of F1

scores, support-weighted F1 (Micro F1) score and macro average F1 (Macro F1)
score as our evaluation metrics, where Micro F1 is the weighted average of per-
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Table 2: Results of task CTA on dataset Semtab2019/WebTables

Model
Semtab2019 WebTables

Micro F1 Macro F1 Micro F1 Macro F1

Sherlock (100%) 0.646 0.440 0.844 0.670
TaBERT (100%) 0.768 0.413 0.896 0.650
TABBIE (100%) 0.799 0.607 0.929 0.734
DODUO (100%) 0.820 0.630 0.928 0.742

RECA(25%) 0.697 0.442 0.909 0.680
RAFL (25%) 0.861 0.743 0.963 0.825
RECA(100%) 0.853 0.674 0.937 0.783
RAFL (100%) 0.875 0.766 0.967 0.834

Table 3: Ablation study of different backbone LLM model for task CTA (resp. RE) on
Semtab2019/WebTables (resp. WikiGS-RE) with 25% (resp. 10%) training data.

Model
Semtab2019 WebTables WikiGS-RE

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

TableLLaMA(7B) 0.822 0.559 0.946 0.805 0.658 0.423
RAFL (Mistral-7B) 0.862 0.675 0.961 0.791 0.832 0.621
RAFL (Vicuna-13B) 0.861 0.743 0.963 0.825 0.893 0.836

type F1 scores (proportional to the support in each type), and Macro F1 is
the mean of all the per-type F1 scores (treating each type equally). (2) For EL
task, following [5], we adopted accuracy to evaluate the linking result, where the
accuracy is the ratio of correctly linked cells to all cells.

5.2 Effectiveness Evaluation

Overall Comparison with Baselines. In this experiment, we aim to answer
the following questions: (1) how is the overall performance of our method RAFL
compared to various baselines? (2) is RAFL robust to few-shot learning scenario
for less human-annotating cost?

We compared the performance of the RAFL with the baselines in Tables 2,
3 and 4, where the percentage in the first column indicates the ratio of Ttrain
used for training model.

From the results, we can observe that RAFL shows outstanding few-shot
learning capability, e.g., with only 25% of annotated data, RAFL can persistently
outperform all non-LLM baselines training with 100% of annotated data. The
reasons behind are: (1) LLM is inherently suitable for few-shot scenario, and (2)
our proposed retrieval model RAFLret can maximumly improve the generalization
capability of LLM, by providing LLM with high-quality demonstrations (rather
than large annotated corpus).

Moreover, RAFL outperforms all baselines w.r.t. the Macro F1, e.g., by 0.201
on average. This shows that RAFL is less affected by the distribution bias in
Ttrain, and can make fair classification on minority relations and types.
Ablation Study for Retrieval Model and Re-Ranking Model. In this
study, we aim to answer the following questions: (1) is our retrieval-model
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Table 4: Results of task RE and EL
on dataset WikiGS

Model
WikiGS-RE WikiGS-EL

Micro F1 Macro F1 Accuracy

TURL(10%) 0.7350 0.3088 0.6055
RAFL (10%) 0.8930 0.8365 0.8705
TURL(25%) 0.8601 0.6755 0.7394
RAFL (25%) 0.9295 0.8642 0.8861

TURL(100%) 0.9025 0.8016 0.8420
RAFL (100%) 0.9323 0.9153 0.9112

GPT-4 0.5295 0.4326 0.9065

Table 5: An Ablation Study on RE
task

Model Micro F1 Macro F1

RAFL w/o ret 0.3272 0.2469
RAFL w/o LLM 0.7427 0.5503

RAFL with LangChain 0.7842 0.5846
RAFL 0.8930 0.8365

RAFLret, pre-ranking model M and re-ranking model LLM effectiveness? (2)
which component above is the most important one for RAFL?

To answer these questions, we compared RAFL with its three variants: RAFL
w/o ret, RAFL w/o LLM and RAFL with LangChain, where RAFL w/o ret is the
RAFL without retrieval model RAFLret nor the demonstration Dκ, RAFL w/o
LLM is the RAFL without the final re-ranking LLM model (i.e., directly selecting
the top-1 result for the pre-ranking model M as output), RAFL with LangChain
is the RAFL by replacing the retrieval model RAFLret by the open-source retrieval
system LangChain [43] (with same hyper-parameter).

This experiment is conducted on the RE task with 10% training data. In Table
5, RAFL w/o ret suffers from the biggest performance drop, since LLM falls into
severe hallucination problem, and thus cannot output correct response. RAFL
w/o LLM also encounters a significant performance drop (especially in Macro F1

score); this is because that the pre-ranking model M cannot use demonstration
nor instruction, and can only pay attention to single column or cell. RAFL with
LangChain showed moderate performance drop, since LangChain can only retrieve
Trelated via semantic similarity without self-annotation.

Table 6: Experiment on Hyper-Parameter Analysis

Vary k Micro-F1 Macro-F1 Vary τ Micro-F1 Macro-F1

k = 0 0.3272 0.2469 τ=0 0.7779 0.5525
k = 1 0.7427 0.5503 τ=2 0.8880 0.7314
k = 3 0.8930 0.8365 τ=4 0.8930 0.8365
k = 5 0.8894 0.7369 τ=8 0.9044 0.7615

LLM Parameter-Size Analysis. As shown in Table 3, we evaluated the impact
of parameter size of the re-ranking LLM model on the performance of RAFL. We
use two models for the analysis: a 7B-parameter Mistral[16] and a 13B-parameter
Vicuna model for both CTA and RE tasks. According to the scaling laws [17],
a larger parameter size indicates a better performance on the model capability,
as verified by the macro F1 score observed for each model. Compared to the
7B-parameter model, a 13B-parameter one improves the ability of model: it
not only understands the context of downstream tasks but also performs more
equitable classifications across minority relations and types. This is supported
by a significant improvement in macro F1 score.
Hyper-Parameter Analysis. In this test, we evaluated the performance of
RAFL by varying two key hyper-parameters: the size k of pre-ranking candidate
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answers and the size τ of demonstration samples. Due to space limit, we only
report the results on RE task with 10% training set; the results on the CTA
and EL tasks are consistent and thus omit. Note that k = 0 indicates that all
relations in R are provided to LLM.

From Table 6, we can see that (1) when k = 0, LLM suffers from significant
hallucination problem, and the performance drops drastically; (2) as k increases
from 1, Micro-F1 increases, while the Macro-F1 may drop (e.g., when k = 5);
this indicates that more instructions may not always be suitable for LLM, since
LLM may be stuck in making decision from more options; (3) as τ increases, the
Micro-F1 increases, while the Macro-F1 may drop (e.g., when τ = 8); this shows
that irrelevant demonstrations would mislead LLM to make wrong decision.

Table 7: Time Cost of RAFL (In Seconds)

CTA:SimTab CTA:WebTable RE:WikiGS-RE EL:WikiGS-EL

Training (25%) 3845 5010 3747 4032
Training (100%) 7321 9032 7030 8064

Inference 340 1823 450 1541

Runtime Analysis. In Table 7, we report the training and inference time of
RAFL on datasets with different ratios of training data. From the results, we can
see that the time cost of RAFL is scalable and acceptable, e.g., no more than
1823 and 9032 seconds for training and inference, respectively, even with 100% of
the training data. This is because that (1) we adopt LoRA [12] to only fine-tune
a small ratio (0.106%) of parameters of LLM, and (2) we apply vLLM [19] to
boost the inference speed of LLM by grouping similar queries with KV cache.

6 Conclusion
In this paper, we propose a unified retrieval-augmented framework with large
language model (RAFL) for addressing the table interpretation problem, which
includes the tasks of entity linking, column type annotation and relation ex-
traction. The proposed RAFL consists of two phases: retrieve and ranking, where
RAFL improves the quality of instructions, demonstrations and outputs in the
retrieve phase, and then feeds these information to LLM in the ranking phase for
selecting the best answer from a small-size set of high-quality candidates. The
performance of the proposed approach is evaluated on extensive experiments.

7 Acknowledgments
This work was supported by Longhua Science and Technology Innovation Bureau
10162A20220720B12AB12 and NSFC 62225202.

References

[1] Bhagavatula et al. “Tabel: Entity linking in web tables”. In: ISWC. 2015.
[2] Bollacker et al. “Freebase: a collaboratively created graph database for structuring human

knowledge”. In: SIGMOD. 2008.
[3] Brown et al. “Language models are few-shot learners”. In: NIPS (2020).
[4] Cutrona et al. “Tough tables: Carefully evaluating entity linking for tabular data”. In: ISWC.

2020.



Mengyi Yan, Weilong Ren �, Yaoshu Wang, and Jianxin Li �

[5] Deng et al. “Turl: Table understanding through representation learning”. In: ACM SIGMOD
Record (2022).

[6] Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language understand-
ing”. In: arXiv preprint (2018).

[7] Dong et al. “A survey for in-context learning”. In: arXiv preprint (2022).
[8] Efthymiou et al. “Matching web tables with knowledge base entities: from entity lookups to

entity embeddings”. In: ISWC. 2017.
[9] Gao et al. “A survey of graph neural networks for recommender systems: Challenges, methods,

and directions”. In: ACM TORS (2023).
[10] Gilmer et al. “Neural message passing for quantum chemistry”. In: ICML. 2017.
[11] Hoffmann et al. “Training compute-optimal large language models”. In: arXiv preprint (2022).
[12] Hu et al. “Lora: Low-rank adaptation of large language models”. In: arXiv preprint (2021).
[13] Hu et al. “VizNet: Towards a large-scale visualization learning and benchmarking repository”.

In: CHI. 2019.
[14] Hulsebos et al. “Sherlock: A deep learning approach to semantic data type detection”. In:

ACM SIGKDD. 2019.
[15] Iida et al. “Tabbie: Pretrained representations of tabular data”. In: arXiv preprint (2021).
[16] Jiang et al. “Mistral 7B”. In: arXiv preprint (2023).
[17] Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint (2020).
[18] Karpukhin et al. “Dense passage retrieval for open-domain question answering”. In: arXiv

preprint (2020).
[19] Kwon et al. “Efficient memory management for large language model serving with pagedat-

tention”. In: SOSP. 2023.
[20] Lewis et al. “Retrieval-augmented generation for knowledge-intensive nlp tasks”. In: NIPS

(2020).
[21] Li et al. “Table-gpt: Table-tuned gpt for diverse table tasks”. In: arXiv preprint (2023).
[22] Lianmin et al. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena. 2023.
[23] Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv preprint

(2019).
[24] Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog (2019).
[25] Ritze et al. “Profiling the potential of web tables for augmenting cross-domain knowledge

bases”. In: WWW. 2016.
[26] Sanh et al. “Multitask Prompted Training Enables Zero-Shot Task Generalization”. In: ICLR.

2022.
[27] Sekhavat et al. “Knowledge Base Augmentation using Tabular Data.” In: LDOW. 2014.
[28] Suhara et al. “Annotating columns with pre-trained language models”. In: SIGMOD. 2022.
[29] Sui et al. “Table meets llm: Can large language models understand structured table data? a

benchmark and empirical study”. In: WSDM. 2024.
[30] Sun et al. “RECA: Related Tables Enhanced Column Semantic Type Annotation Framework”.

In: VLDB (2023).
[31] Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv preprint

(2023).
[32] Vashishth et al. “Composition-based multi-relational graph convolutional networks”. In: arXiv

preprint (2019).
[33] Vaswani et al. “Attention is all you need”. In: NIPS (2017).
[34] Wang et al. “TCN: table convolutional network for web table interpretation”. In: WWW. 2021.
[35] Wang et al. “Understanding tables on the web”. In: Conceptual Modeling. 2012.
[36] Wei et al. “Emergent abilities of large language models”. In: arXiv preprint (2022).
[37] Xiao et al. C-Pack: Packaged Resources To Advance General Chinese Embedding. 2023.
[38] Xiao et al. LM-Cocktail: Resilient Tuning of Language Models via Model Merging. 2023.
[39] Yin et al. “TaBERT: Pretraining for joint understanding of textual and tabular data”. In:

arXiv preprint (2020).
[40] Zhang et al. “Sato: Contextual semantic type detection in tables”. In: arXiv preprint (2019).
[41] Zhang et al. “Tablellama: Towards open large generalist models for tables”. In: NAACL (2024).
[42] Zhao et al. “A survey of large language models”. In: arXiv preprint (2023).
[43] Harrison Chase. LangChain. Oct. 2022. url: https://github.com/langchain-ai/langchain.
[44] Xiang Deng and Huan Sun. “Leveraging 2-hop distant supervision from table entity pairs for

relation extraction”. In: arXiv preprint (2019).
[45] Keti Korini and Christian Bizer. “Column Type Annotation using ChatGPT”. In: arXiv

preprint (2023).
[46] Mohammad Mahdavi and Ziawasch Abedjan. “Baran: Effective error correction via a unified

context representation and transfer learning”. In: VLDB (2020).
[47] Ralph Peeters and Christian Bizer. “Using ChatGPT for Entity Matching”. In: arXiv preprint

(2023).
[48] Shuo Zhang and Krisztian Balog. “Web table extraction, retrieval, and augmentation: A sur-

vey”. In: TIST (2020).
[49] Ziqi Zhang. “Effective and efficient semantic table interpretation using tableminer+”. In: Se-

mantic Web (2017).

https://github.com/langchain-ai/langchain

	A Retrieval-Augmented Framework for Tabular Interpretation with Large Language Model

